期刊文献+

基于SURF的图像配准方法研究 被引量:119

Image registration approach based on SURF
下载PDF
导出
摘要 图像配准在计算机视觉、医学诊断与治疗、图像拼接等领域有广泛的应用。基于特征的方法具有压缩信息量、执行速度快、精度高等优点,成为近年来研究的热点,SIFT是其中之一。但传统的SIFT方法数据量大、计算耗时长,提出了一种基于SURF的图像配准方法。首先用SURF方法提取特征点,其次用最近邻匹配法找出对应匹配点对,结合RANSAC和最小二乘法求出图像之间的映射关系,最后利用所求的变换参数插值得到配准后的图像。实验表明:该配准算法既满足参数估算准确的要求,又具有比SIFT计算量小、速度快的优点,有一定的理论和应用价值。 Image registration technique has been widely used in many fields, such as computer vision, medical diagnosis, and treatment and image mosaic. Because of the advantages of supressing information, fast running speed, high accuracy, the method based on feature is a hotspot, SIFT is the typical one. With the shortcomings of large data and time consuming in conventional SIFT method, an image registration approach based on SURF was proposed. Firstly, the feature points were extracted using SURF and the corresponding matching points were found using nearest neighbor method; then the mapping relationship between images could be acquired using RANSAC and least squares techniques; finally registered image was obtained based on interpolation of transform parameters above. Experimental result shows that this algorithm meets the needs of accuracy of parameters estimation values and have smaller calculation and faster speed than SIFT as well. So, it has certain values in both theory and practice.
出处 《红外与激光工程》 EI CSCD 北大核心 2009年第1期160-165,共6页 Infrared and Laser Engineering
基金 国家自然科学基金资助项目(60777042)
关键词 图像配准 SURF 特征提取 Image registration Speeded Up Robust Features Feature extraction
  • 相关文献

参考文献20

  • 1ZITOVA B, FLUSSER J. Image registration methods:a survey [J].Image and Vision Computing ,2003,21:977-1000. 被引量:1
  • 2王向军,王研,李智.基于特征角点的目标跟踪和快速识别算法研究[J].光学学报,2007,27(2):360-364. 被引量:48
  • 3雷凯,刘艳滢,王延杰,邢忠宝,尹立敏.一种新的基于图像主轮廓的配准算法[J].微计算机信息,2007(02X):267-268. 被引量:13
  • 4HARRIS C G, STEPHENS M J. A combined comer and edge detector [C]//Processings Fourth Alvey Vision Conference, Manchester, 1988:147-151. 被引量:1
  • 5SMITH S M, BRADY J M. SUSAN-a new approach to low level image processing[J]. International Journal of Computer Vision, 1997,23(1): 45-78. 被引量:1
  • 6LOWE D G.Object recognition from local scale-invariant features [C]// International Conferenceon Computer Vision, Corfu, Greece Sept, 1999 : 1150-1157. 被引量:1
  • 7MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[J].International Journal of Computer Vision, 2004,60(1):63-86. 被引量:1
  • 8LOWED G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004.60(2), 91-110. 被引量:1
  • 9BICEGO M , LAGORIO A, GROSSO E,et al. On the use of SIFT features for face authentication [C]//2006 IEEE Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition Workshop,2006:1-7. 被引量:1
  • 10AYERS B, BOUTELL M.Home interior classification using sift keypoint histograms[J]. IEEE,2007:1-6. 被引量:1

二级参考文献42

共引文献200

同被引文献921

引证文献119

二级引证文献640

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部