期刊文献+

基于运动单元的肌肉力估计新方法 被引量:2

A New Muscle Force Estimation Method Based on Motor Unit
下载PDF
导出
摘要 目的从肌肉运动单元角度探索肌肉力与表面肌电信号(surface electromyoram,s EMG)的规律。方法首先利用梯度卷积核补偿算法(gradient convolution kernel compensation,GCKC)对实验采集得到的s EMG信号进行分解,然后采用棘波触发技术(spike triggered averaging,STA)提取运动单元MU波形,最后基于MU波形,运用最小二乘法拟合肌肉力,建立肌肉力与s EMG之间的关系。结果肌肉运动单元募集数目与幅值和基本上随肌肉力增大而增大,运动单元平均发放频率随肌肉力增大规律不明显。结论本文为肌肉力的估计提供了一种新思路,从肌肉运动单元幅值之和来估计肌肉力基本可行。 Objective To develop the relationship between muscle force and surface electromyogram( s EMG)based on muscle motor unit. Methods First,the s EMG signals from experiments were decomposed using GCKC( gradient convolution kernel compensation),then MU waveform was extracted using STA( spike triggered averaging),finally the muscle forces were fitted to discuss the relationship between muscle force and s EMG with the application of the least squares method. Results According to the analysis results,the number of motor unit recruitment and the sum of amplitude increased basically with the muscle force,while average firing frequency change was not obvious with muscle force. Conclusion This paper provides a new idea for muscle force estimation,and it is feasible to estimate muscle force by using the amplitude sum of muscle motor units.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2015年第5期313-318,共6页 Space Medicine & Medical Engineering
基金 国家自然科学基金-青年基金(61403218) 浙江省自然科学基金(LQ14F030001) 宁波科技攻关项目(2014C50048) 宁波自然科学基金(2015A610153 2014A610083)
关键词 运动单元 表面肌电 信号分解 肌肉力 motor unit surface EMG signal decomposition muscle force
  • 相关文献

参考文献26

  • 1Liu Y, Ning Y, Li S, et al. Three-dimensional innervation zone imaging from multi-channel surface EMG recordings[ J]. International Journal of Neural Systems, 2015, 25 (6): 1550024. 被引量:1
  • 2Christophy M, Senan NAF, Lotz JC, et al. A musculoskeletal model for the lumbar spine [ J ]. Biomechanics and modeling in mechanobiology, 2012, 11 ( 1-2 ) : 19-34. 被引量:1
  • 3Wilson E. Force response of locust skeletalmuscle [ D ]. Southampton: Southampton University, 2001. 被引量:1
  • 4Riener R, Quintern J. A physiologically based model of mus- cle activation verified by electrical stimulation[J]. Bioelectro- chem Bioenerg,1997,43(2) : 257-264. 被引量:1
  • 5Ghigliazza R, Holmes P. Towards a neuromechanical model for insect locomotion : hybrid dynamical systems [ J ]. Regul Chaotic Dyn, 2005,10(2) : 193-225. 被引量:1
  • 6Ding J, Wexler AS, Binder-Macleod SA. A mathematical model that predicts the force-frequency relationship of human skeletal muscle[J]. Muscle Nerve, 2002, 26 (4):477-485. 被引量:1
  • 7Nakano T,Nagata K, Yamada M, et al. Application of least square method for muscular strength estimation in hand motion recognition using surface EMG[C]. Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual Internation- al Conference of the IEEE, 2009 : 2655-2658. 被引量:1
  • 8Zhou P, Suresh NL, Rymer WZ. Model based sensitivity anal- ysis of EMG-force relation with respect to motor unit proper- ties: applications to muscle paresis in stroke [J].Ann Bi- omed Eng, 2007, 35(9) : 1521-1531. 被引量:1
  • 9Wagner H, Bostrm K, Rinke B. Predicting isometric force from muscular activation using a physiologically inspired mod- el [ J ]. Biomechanics and modeling in mechanobiology, 2011, 10(6) : 955-961. 被引量:1
  • 10Sheikh Shanawaz Mostafai, Mohiuddin Ahmad, Md. Abdul Awae. Clench force estimation by surface electromyography for neural prosthesis hand [ C ]. IEEE International Conference on Informatics, 2012,505-510. 被引量:1

二级参考文献53

共引文献45

同被引文献3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部