期刊文献+

基于证据理论与DBN的炮兵远程火力毁伤评估 被引量:2

Fire Damage Assessment on Artillery Long-distance Firepower Based on Evidence Theory and Dynamic Bayesian Network
下载PDF
导出
摘要 针对炮兵远程火力毁伤评估中获取信息的信度和效度等问题,将证据理论引入DBN(Dynamic Bayesian Network,动态贝叶斯网络)进行毁伤效果的评估。通过构建炮兵远程火力毁伤指标体系,利用模糊集合理论将毁伤指标进行离散划分,建立基于证据理论与DBN相结合的毁伤评估模型,并基于连接树(Junction Tree)算法实现对火力毁伤效果的动态评估。最后,通过仿真验证分析,得出了较为可靠的结论,为远程火力毁伤效果科学评估提供了有效的方法。 Aimming at on the problem of the reliability and certainty of the damage information in the assessment of artillery long-distance firepower damage,the evidence theory is introduced into DBN to estimate the effect of the damage. The index system of artillery long-distance firepower is built,and it is discretely divided through fuzzy-set theory. The model of the artillery long-distance firepower damage assessment which is based on the dynamic Bayesian network combined with the evidence theory is built to implement the dynamic assessment of firepower damage through the junction tree algorithm. And it is qualitatively analyzed,which promotes the scientificalness and accuracy of the long-distance firepower damage assessment.Finally,the model is validated by simulation,and the more reliable conclusion is drawn which provides effective ways to assess the long-distance firepower damage scientifically.
作者 刘铜 李小全
机构地区 南京炮兵学院
出处 《指挥控制与仿真》 2015年第5期62-66,共5页 Command Control & Simulation
基金 国防预研基金项目
关键词 DBN 远程火力 动态评估 证据理论 模糊集合理论 dynamic Bayesian network long-distance firepower dynamic assessment evidence theory fuzzy-set theory
分类号 E917 [军事]
  • 相关文献

参考文献6

二级参考文献33

共引文献73

同被引文献25

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部