期刊文献+

基于模糊贝叶斯网络的态势威胁评估模型 被引量:24

Model of Situation and Threat Assessment Based on Fuzzy Bayesian Network
下载PDF
导出
摘要 针对传感器测量数据的不确定性,提出基于模糊贝叶斯网络的态势威胁评估模型。该模型首先将不确定性数据分为模糊域和概率域两大类,然后在模糊域使用模糊综合评判得到威胁目标的动态威胁度,接着运用可能性概率转换理论将模糊表示的动态威胁度转化成概率域知识,最后在概率知识域使用贝叶斯网络推理算法得到目标的威胁等级。实例计算表明,该方法能够较好的反映威胁源的威胁等级,为武器系统选择跟踪打击目标提供决策依据,具有一定的实用性。 To process uncertain data obtained in sensors, a model of Situation and Threat Assessment (STA) based on fuzzy Bayesian network was proposed. The uncertain sensor data were divided into vagueness domain and probability domain. The vague data type of the threat target was handled by fuzzy comprehensive evaluation, and the dynamic threat degree was obtained in fuzzy domain. And then the fuzzy dynamic threat degree was translated into the probabilistic type by the possibility/probability theory. All the uncertain data were figured in probabilistic type and processed by Bayesian network to produce the threat level of the target. An example indicates that the fuzzy Bayesian network can obtain the real threat levels and is feasible for weapon system to automate decision-making on target-selecting and target-striking.
出处 《光电工程》 CAS CSCD 北大核心 2008年第5期1-5,共5页 Opto-Electronic Engineering
基金 国防武器装备预研项目
关键词 态势评估 威胁评估 模糊综合评判 贝叶斯网络 situation assessment threat assessment fuzzy comprehensive evaluation Bayesian network
  • 相关文献

参考文献9

  • 1Hall D L, Llinas J. An Introduction to Multisensor Data Fusion [J]. Proceedings of the IEEE, 1997, 18(5): 145-153. 被引量:1
  • 2Steinberg Alan N. Threat Assessment Technology Development [J]. Lecture Notes in Computer Science, 2005, 3554: 490-500. 被引量:1
  • 3QU Chang-wen, HE You. A method of threat assessment using multiple attribute decision making [J]. Proceeding of the IEEE Signal Processing, 2002, 2: 1091-1095. 被引量:1
  • 4唐雪松,郭立红,陈长喜.基于积因子方法的空中目标威胁排序研究[J].光电工程,2006,33(11):17-21. 被引量:1
  • 5刘同明等编著..数据融合技术及其应用[M].北京:国防工业出版社,1998:276.
  • 6Jousselme A. Uncertainty in a situation analysis perspective [J]. Proceedings of the International Society on Information Fusion Conference, 2003, 2: 1207-1214. 被引量:1
  • 7陈水利,李敬功,王向公.模糊集合及其应用[M].北京:科学出版社,2005. 被引量:1
  • 8Jensen F. An Introduction to Bayesian Networks [M]. New York: Springer, 1996, 被引量:1
  • 9Koichi yamada. Probability-Possibility Transformation Based On Evidence Theory [J]. Proceeding of the IEEE IFSA World Congress, 2001, 1: 70-75. 被引量:1

二级参考文献7

  • 1中国人民解放军总装备部军事训练教材编辑工作委员会.国防系统分析方法[M].北京:国防工业出版社,2003.. 被引量:7
  • 2刘曙阳 程万祥.C^3I系统开发技术[M].北京:国防工业出版社,1999.. 被引量:5
  • 3刘同明 夏祖勋 解洪成.数据融合技术及其应用[M].北京:国防工业出版社,2000.. 被引量:44
  • 4Keller J, Lebiere C, Shay R. Cockpit system situational awareness modelling tool[A]. Proceedings of the Fifth Human Performance, Situation Awareness and Automation Conference[C]. Daytona Beach, FL, 2004. 被引量:1
  • 5Paul Gonsalves. Decision Support System for Theater Missile Defense[J]. SPIE, 2003, 5096: 473-481. 被引量:1
  • 6Lawrence A.K. Sensor and Data Fusion Concepts and Applications[M]. Beijing: Beijing Institute of Technology Press, 2004. 被引量:1
  • 7魏世效,周献中.多属性决策理论方法及其在C^3I系统中的应用[M].北京:国防工业出版社,1998. 被引量:2

同被引文献288

引证文献24

二级引证文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部