期刊文献+

Elman神经网络在水电站入库流量短期预测中的应用 被引量:4

Application of Elman neural network in short-term reservoir inflow forecasting in hydropower station
下载PDF
导出
摘要 Elman神经网络具有适应时变特性的能力,对历史数据具有敏感性,具备自主学习的优势,能以任意精度逼近任意非线性映射。梯度下降法可使函数具有单调递减性、梯度收敛于0等特点。采用梯度下降法和Elman神经网络相结合的方法进行水电站入库流量短期预测,比传统的Back Propagation神经网络预测精度具有明显的优势。 Elman neural network has the adaptability to time-varying characteristics,the sensitivity to historical data and the advantage of self-learning,it can approximate to any nonlinear mapping by an arbitrary accuracy. Meanwhile,the gradient descent method can make function has properties of monotone decreasing and gradient converges to 0. Compared with the traditional Back Propagation neural network,the method which combining the gradient descent method and Elman neural network has better prediction precision for the short-term reservoir inflow forecasting in hydropower station.
出处 《华电技术》 CAS 2015年第7期1-3,76,共3页 HUADIAN TECHNOLOGY
关键词 ELMAN 神经网络 梯度下降法 预测 入库流量 Elman neural network gradient descent method forecasting reservoir inflow
  • 相关文献

参考文献9

二级参考文献26

  • 1袁亚湘 孙文瑜.最优化理论与方法[M].北京:科学出版社,2001.. 被引量:100
  • 2魏风英.现代气候统计诊断与预测技术[M].北京:气象出版社,1999.20-36. 被引量:91
  • 3Jang J R.ANFIS:Adaptive-network-based fuzzy inference system[J].IEEE Transactions on Systems,Man,and Cybernetics (S1083-4419),1993,23(3):665-685. 被引量:1
  • 4Lin C T.Neural Fuzzy Control Systems with Structure and Parameter Learning[M].World Scientific,Singapore,1994,129-138. 被引量:1
  • 5WU Wei,FNG Guo-rui,LI Zheng-xue, et al. Convergence of an online gradient method for BP neural networks[ J]. IEEE Transactionson Neural Networks ,2005,16(3) :533-540. 被引量:1
  • 6WU Wei, SHAO Hong-mei, QU Di. Strong convergence for gradient methods for BP networks training [A].In: ZHAO Ming-sheng, SHI Zhong-zhi, Eds. Proce2dings of 2005 International Conference an Neural Networks and Brains [C]. Beijing, China: IEEE Press,2005,332-334. 被引量:1
  • 7Gori M, Maggini M. Optimal convergence of on-line back propagation [ J ]. IEEE Transaction an Neural Networks, 1995,7( 1 ) : 251-254. 被引量:1
  • 8Ortega J, Rheinboldt W. Iterative Solution of Nonlinear Equations in Several Variables [ M ]. New York. Academic Press, 1970. 被引量:1
  • 9Elman J L. Finding structure in time[J]. Cognitive Science, 1990,14(2) : 179-211. 被引量:1
  • 10Tsoi A C, Back A D. Locally recurrent globally feedforward networks: a critical review of architec- tures[ J ]. IEEE Transactions on Neural Networks, 1994,5(2) :229-239. 被引量:1

共引文献88

同被引文献41

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部