期刊文献+

基因组靶向修饰技术研究进展 被引量:3

Research progress on the targeted genome modification
下载PDF
导出
摘要 基因组靶向修饰技术是研究基因功能的重要方法之一,该技术也被用于人类疾病的治疗上,从而成为近来生物学研究的热点。传统的靶向修饰技术由于其效率低、有毒性等缺点注定其将要被更高效、安全的技术所取代,因此产生了后来的三代基因组靶向修饰技术:锌指核酸酶(Zinc finger nuclease,ZFN)、类转录激活因子效应物核酸酶(Transcription activator-like effector nuclease,TALEN)和常间回文重复序列丛集关联蛋白系统(Clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins 9,CRISPR/Cas9)。这3种技术在克服传统技术缺陷的基础上,也针对其上一代技术的缺陷进行了自身的改善。对三代基因组靶向修饰技术,尤其最近发展起来的CRISPR/Cas9的结构组成、作用原理和基因定点修饰中的应用进行阐述,最后对三代基因组靶向修饰技术进行比较。 Targeted genome modification technology is one of the important methods to study genes′function, which also can be used for the treatment of human diseases at the same time.It is becoming a hot field of biology research in recent years.Because of its low efficiency and toxicity, traditional targeted modification technology will be replaced by a more efficient and safer technology.Thus three generations of targeted genome modification technologies have been developed.It includes ZFN, TALEN and CRISPR/Cas9.These three techniques overcome the defects of traditional technology.Here, we discuss the research progress in the structure, mechanism and application of these three technologies, especially newly developed CRISPR/Cas9.Finally, the three generations of genome modifi-cation techniques are compared.
出处 《生物学杂志》 CAS CSCD 2015年第5期70-75,共6页 Journal of Biology
基金 国家自然科学基金(31301919) 江苏省自然科学基金(BK20130506) 安徽省自然科学基金(1508085MH203) 安徽省高等学校省级自然科学基金项目(KJ2011A270 KJ2013A265) 江苏大学高级人才科研启动基金(1281330018)
关键词 基因组靶向修饰 ZFN TALEN CRISPR/Cas9 targeted genome modification ZFN TALEN CRISPR/Cas9
  • 相关文献

参考文献4

二级参考文献93

  • 1白光兴,孙志伟,黄莺,俞炜源.利用Red重组系统对大肠杆菌ClpP基因的敲除[J].中国生物化学与分子生物学报,2005,21(1):35-38. 被引量:29
  • 2Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc NatlAcadSci USA, 1996, 93(3): 1156-1160. 被引量:1
  • 3Klug A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys, 2010, 43(1): 1-21. 被引量:1
  • 4Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IlIA from Xenopus oocytes. EMBOJ, 1985, 4(6): 1609-1614. 被引量:1
  • 5Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct, 2000, 29(6): 183-212. 被引量:1
  • 6Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol, 2005, 23(8): 967-973. 被引量:1
  • 7Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science, 1991, 252(5007): 809 817. 被引量:1
  • 8Fu FL, Sander JD, Maeder M, Thibodeau-Beganny S, Joung JK, Dobbs D, Miller L, Voytas DF. Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res, 2009, 37(Suppl 1): D279-D283. 被引量:1
  • 9Jayakanthan M, Muthukumaran J, Chandrasekar S, Chawla K, Punetha A, Sundar D. ZifBASE: a database of zinc finger proteins and associated resources. BMC Genomics, 2009, 10(1): 421. 被引量:1
  • 10Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey R J, Hirsh AS, Eichtinger M, Fu FL, Porteus MH, Dobbs D, Voytas DF, Joung JK. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc, 2006, 1(3): 1637-1652. 被引量:1

共引文献156

同被引文献26

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部