期刊文献+

Dynamics behaviors of a delayed competitive system in a random environment 被引量:4

Dynamics behaviors of a delayed competitive system in a random environment
原文传递
导出
摘要 In the real world, the population systems are often subject to white noises and a system with such stochastic perturbations tends to be suitably modeled by stochastic differential equations. This paper is concerned with the dynamic behaviors of a delay stochastic competitive system. We first obtain the global existence of a unique positive solution of system. Later, we show that the solution of system will be stochastically ultimate boundedness. However, large noises may make the system extinct exponentially with probability one. Also, sufficient conditions for the global attractivity of system are established. FinMly, illustrated examples are given to show the effectiveness of the proposed criteria.
出处 《International Journal of Biomathematics》 2015年第5期181-199,共19页 生物数学学报(英文版)
基金 Acknowledgments The authors thank the referees for their reports and many valuable comments and suggestions that greatly improved the presentation of this paper. The work is supported by the National Natural Science Foundation of China (No. 11261017), the Key Laboratory of Biological Resources Protection and Utilization of Hubei Province (No. PKLHB1323) and the Key Project of Chinese Ministry of Education (No. 212111).
关键词 Delayed competitive system white noise stochastically ultimate bounded-ness EXTINCTION global attractivity. 时滞竞争系统 随机环境 动力学行为 随机微分方程 整体存在性 最终有界性 全局吸引性 现实世界
  • 相关文献

参考文献1

二级参考文献15

  • 1S. Ahmad and G. T. Stamov, Almost periodic solutions of N-dimensional impulsive competitive systems, Nonlinear Anal. Real World Appl. 10 (2009) 1846-1853. 被引量:1
  • 2J. O. Alzabut, G. T. Stamov and E. Sermutlu, On almost periodic solutions for an impulsive delay logarithmic population model, Math. Comput. Model. 51 (2010) 625-63l. 被引量:1
  • 3J. B. Geng and Y. H. Xia, Almost periodic solutions of a nonlinear ecological model, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 2575-2597. 被引量:1
  • 4K. Gopalsamy, Global asymptotic stability in an almost periodic Lotka-Volterra system, J. Australian Math. Soc. Ser. B 27 (1986) 346-360. 被引量:1
  • 5K. Copalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and Its Applications, Vol. 74 (Kluwer Academic Publishers, Dordrecht, 1992). 被引量:1
  • 6M. X. He, F. D. Chen and Z. Li, Almost periodic solution of an impulsive differential equation model of plankton allelopathy, Nonlinear Anal. Real World Appl. 11 (2010) 2296-230l. 被引量:1
  • 7Z. T. Huang and Q. G. Yang, Existence and exponential stability of almost periodic solution for stochastic cellular neural networks with delay, Chaos, Solitons Fractals 42 (2009) 773-780. 被引量:1
  • 8Y. K. Li and T. W. Zhang, Almost periodic solution for a discrete hematopoiesis model with time delay, Int. J. Biomath. 5 (2012) 1250003, doi: 10.1142/ S179352451100143X. 被引量:1
  • 9Z. J. Liu, R. H. Tan and Y. P. Chen, Modeling and analysis of a delayed competitive system with impulsive perturbations, Rocky Mountain J. Math. 38 (2008) 1505-1523. 被引量:1
  • 10Z. J. Liu, J. H. Wu and R. A. Cheke, Coexistence and partial extinction in a delay competitive system subject to impulsive harvesting and stocking, IMA J. Appl. Math. 75 (2010) 777-795. 被引量:1

共引文献8

同被引文献5

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部