期刊文献+

ASYMPTOTIC PROPERTY FOR A LOTKA-VOLTERRA COMPETITIVE SYSTEM WITH DELAYS AND DISPERSION 被引量:4

ASYMPTOTIC PROPERTY FOR A LOTKA-VOLTERRA COMPETITIVE SYSTEM WITH DELAYS AND DISPERSION
原文传递
导出
摘要 An n-species nonautonomous Lotka-Volterra competition and diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and by using the skill of constructing an appropriate Lyapunov function, the new sufficient conditions are obtained for the global asymptotic stability and the uniqueness of the positive periodic solution, An n-species nonautonomous Lotka-Volterra competition and diffusion model with time delays is investigated. It is shown that the system is uniformly persistent under some appropriate conditions, and by using the skill of constructing an appropriate Lyapunov function, the new sufficient conditions are obtained for the global asymptotic stability and the uniqueness of the positive periodic solution,
机构地区 Dept. of Basic Courses
出处 《Annals of Differential Equations》 2005年第3期378-384,共7页 微分方程年刊(英文版)
基金 Supported by the National Natural Science Foundation of China (10171056).
关键词 competition and diffusion system delay global asymptotic stability Lyapunov function periodic solution competition and diffusion system, delay, global asymptotic stability, Lyapunov function, periodic solution
  • 相关文献

同被引文献61

  • 1Bereketoglu H, Gyori I. Global asymptotic stability in a nonautonomous Lotka-Volterra type systems with infinite delay[J]. Journal of Mathematical Analysis and Applications, 1997, 21(}(1): 279-291. 被引量:1
  • 2Teng Z D, Yu Y. Some new results of nonautonomous Lotka-Volterra Competitive systems with delays[J]. Journal of Mathematical Analysis and Applications, 2000, 241(2): 254-275. 被引量:1
  • 3Jin Z, Ma Z E. Stability for a competitive Lotka-Volterra system with delays[J]. Nonlinear Analysis, 2002, 51: 1131-1142. 被引量:1
  • 4Liu S Q,Chen L S. Permanence,extinction and balancing survival in nonautomous Lotka-Volterra system with delays[J]. Applied Mathematics and Computation, 2002, 129(2): 481-499. 被引量:1
  • 5Kuang Y. Delay differential equatioms with applications in population dynamics[M].Academic press, inc, 1993. 被引量:1
  • 6Cui J A, Chen L S. The effects of habitat fragmentation and ecological invasion on population sizes [J]. Computers and Mathematics with Application.s, 1999, 38(1): 1-11. 被引量:1
  • 7Song X Y. Conditions for Global Attractivity of n-Patches Predaor-Prey Dispersion-Delay Models[J]. Journal of Mathematical Analysis and Applications, 2001, 253(1): 1-15. 被引量:1
  • 8Cui J A. Chen L S. The effect of diffusion on the time varying logistic population growth[J]. Computers and Mathematics with Applications, 1998, 36(3): 1-9. 被引量:1
  • 9Lu Z H. Takeuchi,Y. Permanence and global attractivity for competitive Lotka-Volterra systems with delay[J]. Nonlinear Analysis, 1994, 22(7): 847-856. 被引量:1
  • 10Fujimoto H. Dynamical behaviors for population growth equations with delays[J]. Nonlinear Analysi, 1998, 31(5): 549-558. 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部