期刊文献+

利用噪声能量和卡方分布约束的虚假锋电位筛除方法 被引量:1

A Method to Remove Fake Spikes by Means of Chi-Square Distribution Constraint of Noise Energy Sum
下载PDF
导出
摘要 神经元锋电位可靠检测在神经科学研究与脑机接口应用中具有重要价值.针对低信噪比条件下锋电位检测的假阳性问题,提出了一种利用锋电位信号背景噪声能量和服从卡方分布约束的虚假锋电位去除方法.首先使用K-Means算法对过阈值检测的待判锋电位进行聚类,并用最小协方差算法估计各聚类总体噪声均值向量与协方差;进而计算各噪声样本与对应总体之间的马氏距离平方作为锋电位背景噪声能量和的度量指标;最后利用该指标卡方分布的置信区间对虚假锋电位进行筛除.不同信噪比条件下的仿真数据和动物实验数据应用结果表明:与传统的基于锋电位波形特征的阵列去噪算法相比,该方法可以有效识别出单电极记录神经信号中的虚假锋电位,正确率在95%以上,并且计算结果不依赖于聚类参数的选择. The reliable detection of neuronal spikes plays an important role from basic research in neuroscience to brain-machine interface applications. In order to solve the false positive problem in spike detection, a method was proposed to remove fake spikes, by using the chi-square distribution constraint of noise energy sum. First, the detected spikes over the threshold were separated by K-Means clustering, and the noise sam- pies were acquired so that its means and covariance could be estimated by minimum covariance determinant (MCD) algorithm. Then, the Square of Mahalanobis Distribution (SMD) between each noise event and corre- sponding population was calculated to indicate the energy sum of noise. Finally, fake spikes were identified if their SMD value were not included in the confidence interval of corresponding chi-square distribution. The resuits from synthetic data and real neural data showed that the de-noising performance of this method is superior to the traditional methods. Its accuracy rate to identify the fake spikes is above 95% , and its performance is not dependent on the choice of clustering number.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2015年第5期111-115,共5页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(U1304602 61473266 61305080) 河南省高等学校重点科研资助项目(15A120016)
关键词 锋电位检测 虚假锋电位 噪声能量和 马氏距离 卡方分布 K-MEANS聚类 Spike detection fake spike noise energy sum mahalanobis distance ehi-square distribution K-Means clustering
  • 相关文献

参考文献15

  • 1HOHL S S, CHAISANGUTHUM K S, LISBERGER S G. Sensory population decoding for visually guided movements[J]. Neuron, 2014, 79(1): 169-179. 被引量:1
  • 2BECEDAS J and QUIROGA R Q Real time decoding for brain-machine interface applications[ J]. Journal of Bioinformatics and Biological Engineering, 2014, 2 (1): 20 -32. 被引量:1
  • 3WAN Hong, LIU Xin-yu, design and implementation NIU Xiao-ke, et al. The of anti-interference system in neural electrophysiological experiments [ J ]. Electri- cal Engineering and Control, Lecture Notes in Electri- cal Engneering, 2011(98) : 605 -611. 被引量:1
  • 4PARALIKAR J K, RAO C R, CLEMENT R S. New approaches to eliminating common - noise artifacts in recordings from intracortical microelectrode arrays: in- ter-electrode correlation and virtual referencing [ J ]. Journal of Neuroscience Methods, 2009, 181 ( 1 ) : 27 -35. 被引量:1
  • 5HILL D N, MEHTA S B, KLEINFELD D. Quality metrics to accompany spike sorting of extracellular sig- nals[ J ]. Journal of Neuroscience, 2011, 31 (24) : 8699 - 8705. 被引量:1
  • 6QUIROGA R Q, NADASDY Z, BEN S Y. Unsuper- vised spike detection and sorting with wavelets and su- perparamagnetic clustering [ J]. Neural Computation, 2004, 16(8): 1661-87. 被引量:1
  • 7LUDWIG K A, MIRIANI R M, LANGHALS N B, et al. Using a common average reference to improve corti-cal neuron recordings from microelectrode arrays [ J l- Journal of Neurophysiology, 2009, 101 ( 3 ) : 1679 - 1689. 被引量:1
  • 8万红,李晓燕,刘新玉,张晓娜.锋电位检测信号的多元小波去噪方法研究[J].系统仿真学报,2013,25(10):2487-2491. 被引量:2
  • 9吴丹,封洲燕,王静.微电极阵列神经元锋电位信号的去噪方法[J].浙江大学学报(工学版),2010,44(1):104-110. 被引量:8
  • 10FAISAL A A, SELEN L P, WOLPERT D M, Noise in the nervous system [ J l, Nat Rev Neurosci, 2008, 9 (4) : 292 -303. 被引量:1

二级参考文献30

  • 1罗强,田化梅,罗萍,陈琦.基于平稳小波变换的心电信号去噪研究[J].计算机与数字工程,2006,34(6):67-69. 被引量:15
  • 2封洲燕,光磊,郑晓静,王静,李淑辉.应用线性硅电极阵列检测海马场电位和单细胞动作电位[J].生物化学与生物物理进展,2007,34(4):401-407. 被引量:19
  • 3BUZSAKI G. Large-scale recording of neuronal ensembles[J].NatureNeuroseienee, 2004, 7(5): 446-451. 被引量:1
  • 4HOCHBERG L R, SERRUYA M D, FRIEHS G M, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia [J]. Nature, 2006, 442(7099): 164 - 171. 被引量:1
  • 5DONOHO D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information, 1995, 41 (3) : 613 - 627. 被引量:1
  • 6DONOHO D L. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90(432): 1200- 1224. 被引量:1
  • 7WEISS K G, ANDERSON D J. A new approach to array denoising[C]///Conference Record of the Thirty- Fourth Asiiomar Conference on Signals, System and Computers. [s. n.].. IEEE, 2000, 2: 1403-1407. 被引量:1
  • 8OWEISS K G, ANDERSON D J. Noise reduction in multichannel neural recordings using a new array wavelet denoising algorithm [J]. Neurocomputing, 2001, 38- 40:1687 - 1693. 被引量:1
  • 9AMINGHAFARI M G S, CHEZE N, POGGI J M. Multivariate denoising using wavelets and principal component analysis [J]. Computational Statistics and Data Analysis, 2006, 50:2371-2398. 被引量:1
  • 10RAO A M, JONES D L. A denoisng approach to multisensor signal estimation [J]. IEEE Transactions on Signal Processing, 2000, 48(5) : 1225 - 1234. 被引量:1

共引文献7

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部