期刊文献+

微电极阵列神经元锋电位信号的去噪方法 被引量:8

Novel denoising approach to neuronal spike signals recorded by microelectrode array
下载PDF
导出
摘要 为了去除神经细胞外单细胞动作电位(即锋电位)记录信号中的各种噪声,提高幅值很小的单细胞锋电位信号检测的正确性,根据多通道微电极阵列记录信号中各个通道之间噪声空间相关性较强的特点,提出主成分分析(PCA)去噪与小波阈值去噪相结合的联合去噪方法.采用PCA方法提取并去除多通道记录信号中相关噪声的第一主成分,然后将信号进行小波多尺度分解,采用软阈值法去除各尺度下的噪声.仿真数据和测试结果表明,联合去噪方法可以同时去除有色噪声和白噪声,在各通道锋电位序列相互独立而噪声相关性较强的情况下,可以显著提高锋电位信号的信噪比.联合去噪方法的性能明显优于PCA去噪方法和小波阈值去噪方法单独使用时的性能,是一种有效的多通道锋电位信号去噪新方法. Based on the fact that there are strong spatial correlations among the noises recorded in multi-channels in a microelectrode array,a new denoising method was developed by combining principle component analysis (PCA) with wavelet threshold method,in order to eliminate various types of noises in extracellular single neuronal action potential (i.e.spike) recordings.The largest noise component in the multi-channel recording signals was first extracted by using PCA decomposition and was removed from the raw signals.The signals then went through wavelet multi-level decomposition.The residual noises in every wavelet level were removed by a soft-thresholding method.Both simulation data and experimental recordings were used to test this PCA-wavelet combined algorithm.The results showed that the algorithm can simultaneously suppress white noise and colored noise,and significantly increase the signal-to-noise ratio of spike signals.Especially for the multiple channel recordings with independent spike signals and highly correlated noises,the performance of the PCA-wavelet combined algorithm significantly surmounts the individual performance of PCA denoising and wavelet threshold denoising used separately.Therefore,the novel PCA-wavelet combined algorithm provides an effective and useful method to denoise multichannel spike signals.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第1期104-110,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(30570585 30770548)
关键词 锋电位 主成分分析 小波阈值去噪 信噪比 微电极阵列 spike principal component analysis wavelet threshold denoising signal-to-noise ratio microelectrode array
  • 相关文献

参考文献19

  • 1BUZSAKI G. Large-scale recording of neuronal ensembles[J].NatureNeuroseienee, 2004, 7(5): 446-451. 被引量:1
  • 2HOCHBERG L R, SERRUYA M D, FRIEHS G M, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia [J]. Nature, 2006, 442(7099): 164 - 171. 被引量:1
  • 3封洲燕,光磊,郑晓静,王静,李淑辉.应用线性硅电极阵列检测海马场电位和单细胞动作电位[J].生物化学与生物物理进展,2007,34(4):401-407. 被引量:19
  • 4DONOHO D L. De-noising by soft-thresholding [J]. IEEE Transactions on Information, 1995, 41 (3) : 613 - 627. 被引量:1
  • 5DONOHO D L. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90(432): 1200- 1224. 被引量:1
  • 6WEISS K G, ANDERSON D J. A new approach to array denoising[C]///Conference Record of the Thirty- Fourth Asiiomar Conference on Signals, System and Computers. [s. n.].. IEEE, 2000, 2: 1403-1407. 被引量:1
  • 7OWEISS K G, ANDERSON D J. Noise reduction in multichannel neural recordings using a new array wavelet denoising algorithm [J]. Neurocomputing, 2001, 38- 40:1687 - 1693. 被引量:1
  • 8AMINGHAFARI M G S, CHEZE N, POGGI J M. Multivariate denoising using wavelets and principal component analysis [J]. Computational Statistics and Data Analysis, 2006, 50:2371-2398. 被引量:1
  • 9RAO A M, JONES D L. A denoisng approach to multisensor signal estimation [J]. IEEE Transactions on Signal Processing, 2000, 48(5) : 1225 - 1234. 被引量:1
  • 10BIERER S M, ANDERSON D J. Multi-channel spike detection and sorting using an array processing technique [J]. Neurocomputing, 1999, 26-27:947 - 956. 被引量:1

二级参考文献45

  • 1王頔,张国雄,李醒飞.无源多通道神经硅微电极的设计方法[J].纳米技术与精密工程,2005,3(2):101-105. 被引量:6
  • 2夏艳萍.微电极阵列技术的应用[J].湖北中医学院学报,2005,7(4):34-35. 被引量:2
  • 3MallatS著 杨力华译.信号处理的小波导引[M].北京:机械工业出版社,2002.. 被引量:3
  • 4Pan J,IEEE Trans BME,1985年,32卷,230页 被引量:1
  • 5Lewicki M S.A review of methods for spike sorting:the detection and classification of neural action potentials [J].Network:Computation Neural System,1998,9(4) :R53-R78. 被引量:1
  • 6Zhang P M,Wu J Y,Zhou Y,et al.Spike sorting based on automatic template reconstruction with a partial solution to the overlapping problem[J].Journal of Neuroscience Methods,2004,135 (1/2):55 -65. 被引量:1
  • 7Salganicoff M,Sarna M,Sax L,et al.Unsupervised waveform classification for multi-neural recordings:a real-time,software based system.I.Algorithms and implementation [J].Journal of Neuroscience Methods,1988,25 (2) :181- 187. 被引量:1
  • 8Zouridakis G,Tam D C.Identification of reliable spike templates in multi-unit extracellular recordings using fuzzy clustering [J].Computer Methods and Programs in Biomedicine,2000,61 ( 1 ):91 - 98. 被引量:1
  • 9Gadicke R,Albus K.Real time separation of multineuron recordings with a DSP32C signal processor [J].Journal of Neuroscience Methods,1995,57 (2):187-193. 被引量:1
  • 10Gadicke R,Albus K.Performance of real time separation of multineuron recordings with a DSP32C microprocessor [J].Journal of Neuroscience Methods,1997,75(2):187-192. 被引量:1

共引文献47

同被引文献82

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部