期刊文献+

基于角点动能的视频群体异常行为检测 被引量:4

Abnormal Crowd Behavior Detection Based on Corner Kinetic in Video
下载PDF
导出
摘要 为了提高实时性和精确度,提出一种利用角点动能检测群体异常行为的方法.首先,利用金字塔Lucas-Kanade光流法计算FAST(Features from Accelerated Segment Test)角点光流,筛选出运动的角点;然后,利用k均值方法聚类图像中的角点,自适应地调整正常行为角点动能,定义每一类的局部异常程度为角点平均动能与正常时的比值,整体运动异常程度为局部异常程度之和;最后,如果整体异常程度大于异常阈值为异常行为,否则为正常行为.实验结果表明:该方法能够检测出多种群体异常行为且实时性强于Harris、SIFT(Scale-Invariant Feature Transform)和SURF(Speed Up Robust Features)角点,精确度高于光流法、社会力法和图分析法. In order to improve the performance of real-time and detection accuracy, this paper presents a method to detect abnormal crowd behavior using corner kinetic. First, the optical flow of FAST corners is calculated using Pyramid Lucas-Kanade optical flow method and the moving corners are selected. Then, the corners are clustered using k-means method and the normal corner kinetic adaptively. The local abnormal degree is defined as the ratio of the average kinetic energy of the corner in each class with the normal. The global abnormal degree is the sum of the local abnormal degrees. Finally, it is believed as abnormal behavior if the global abnormal degree is greater than the threshold; otherwise, it is considered as normal behavior. Experimental results show that the method can detect different abnormal behavior with higher real-time performance than Harris corners, SIFT and SURF and higher detection accuracy than optical flow method, social force model and graph analysis method.
出处 《郑州大学学报(工学版)》 CAS 北大核心 2015年第3期20-24,共5页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(61172152)
关键词 群体异常行为 K均值 角点动能 异常程度 自适应 abnormal crowd behavior k-means corner kinetic abnormal degree adaptive
  • 相关文献

参考文献11

  • 1MANUEL A, AHDREA T, ALVARO S M, et al. Ab- normal behavior detection using dominant sets [ J ]. Machine Vision and Applications, 2014, 25 ( 5 ) : 1351 - 1368. 被引量:1
  • 2JUNIOR S J. Crowd analysis using computer vision techniques [ J ]. IEEE Signal Processing Magazine, 2010, 27(5) : 66 -77. 被引量:1
  • 3CRISTANI M, RAGHAVENDRA R, ALESSIO D B, et al. Human behavior analysis in video surveillance: A social signal processing perspective [ J ]. Neurocom- puting, 2013, 100(2): 86-97. 被引量:1
  • 4朱海龙,刘鹏,刘家锋,唐降龙.人群异常状态检测的图分析方法[J].自动化学报,2012,38(5):742-750. 被引量:17
  • 5张震,李丹丹.自适应双阈值的运动目标检测算法[J].郑州大学学报(工学版),2013,34(6):15-19. 被引量:4
  • 6MAHADEVAN V, I3 Wei-xin, VASCONCELOS N, et al. Anomaly detection and localization in crowded scenes[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36( 1 ) : 18 -32. 被引量:1
  • 7MEHRAN R, OYAMA A, SHAH M. Abnormal crowd behavior detection using social force model [ C ]// Computer Vision and Pattern Recognition, 2009. Mi- ami, Florida: IEEE Press,2009:935-942. 被引量:1
  • 8段晶晶,高琳,范勇,李郁峰,夏菁菁,任新宇.基于KOD能量特征的群体异常行为识别[J].计算机应用研究,2013,30(12):3836-3839. 被引量:7
  • 9ROSTEN E, DRUMMOND T. Computer vision-ECCV 2006 [ M ]. Berlin : Springer,2006 : 430 - 443. 被引量:1
  • 10LOWED G. Distinctive image features from scale-in- variant keypoints [ J ]. International Journal of Com- puter Vision, 2004, 60(2) : 9l - 110. 被引量:1

二级参考文献35

  • 1Albiol A, Silla M J, Albiol A, Mossi J M. Video analy- sis using corner motion statistics. In: Proceedings of llth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance. Miami, USA: IEEE, 2009.31-37. 被引量:1
  • 2Srivastava S, Ng K K, Delp E J. Crowd flow estimation us- ing multiple visual features for scenes with changing crowd densities. In: Proceedings of 8th IEEE International Con- ference on Advanced Video and Signal-Based Surveillance. Klagenfurt, Austria: IEEE, 2011. 60-65. 被引量:1
  • 3Chan A B, Vasconcelos N. Modeling, clustering, and seg- menting video with mixtures of dynamic textures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 909-926. 被引量:1
  • 4Wu S D, Moore B E, Shah M. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In: Proceedings of IEEE Computer Society Conference oil Computer Vision and Pattern Recognition. San Prancisco, CA, USA: IEEE, 2010. 2054-2060. 被引量:1
  • 5Helbing D, Moln~r P. Social force model for pedestrian dy- namics. Physical Review, 1995, 51(5): 4282-4286. 被引量:1
  • 6Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. Miami, Florida, USA: IEEE, 2009. 935- 942. 被引量:1
  • 7Wang B, Ye M, Li X, Zhao F J, Ding J. Abnormal crowd be- havior detection using high-frequency and spatio-temporal features. Machine Vision and Applications (Springer). [Online], available: http://www.springerlink.com/content/ vr38484834416985/, Janulary 11, 2012. 被引量:1
  • 8Horn B K P, Schunck B G. Determining optical flow. Arti- ficial Intelligence, 1981, 17(1-3): 185-203. 被引量:1
  • 9Khatri C G, Mardia K V. The von Mises-Fisher matrix dis- tribution in orientation statistics. Journal of the Royal Sta- tistical Society: Series B (Methodological), 1977, 39(1): 95 -106. 被引量:1
  • 10Comaniciu D, Meer P. Mean shift.: a robust approach to- ward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619. 被引量:1

共引文献25

同被引文献23

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部