期刊文献+

一种新的基于局部轮廓特征的目标检测方法 被引量:18

A New Object Detection Algorithm Using Local Contour Features
下载PDF
导出
摘要 针对复杂场景中背景复杂、目标周围噪声多及目标只占图像中较小部分而难于检测的问题,提出一种新的基于局部轮廓特征的检测目标方法.该方法首先利用改进的全局概率边界算法(Globalized probability of boundary,gPb)算法提取图像的轮廓,然后应用最大类间方差法(Otsu)进行自动阈值处理得到图像的显著性轮廓;再提取显著性轮廓的k邻近大致直线轮廓段(k connected roughly straight contour segments,kAS),并以kAS作为局部特征,用于复杂场景中的目标检测.该算法结合gPb算法和Otsu提取轮廓的显著性轮廓,去除了目标附近的大量噪声边界,有效地提高了检测效率.同时,在检测阶段,测试集与训练集中提取的不相关特征数目也得到较大减少,从而提高了检测的精度.多组实验结果均表明本文方法的有效性. It is difficult to detect objects in complex scene in which more noise is around the object or the object is only a small portion of the image. In order to solve the problem, a new object detection algorithm based on local contour features is proposed in this paper. Firstly, an improved gPb (globalized probability of boundary) Mgorithm is used to extract the outline of the image. Then the Otsu for automatic threshold processing is applied to obtain the significant contour. Next, k connected roughly straight contour segments (k adjacent segments, kAS) are extracted and used as a local feature for object detection in complex scenes. The algorithm combines gPb algorithm and Otsu to extract significant contour, thus it can remove much noise around the object boundary, and effectively improve the detection efficiency as well. Meanwhile, in the detection phase, the numbers of irrelevant features in the test set and the training set are largely reduced, therefore the detection accuracy is improved. Multiple sets of experimental results demonstrate the effectiveness of this method.
出处 《自动化学报》 EI CSCD 北大核心 2014年第10期2346-2355,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61063030 61263046 61165011)资助~~
关键词 轮廓提取 局部轮廓特征 阈值处理 目标检测 Contour extraction, local contour features, threshold processing, object detection
  • 相关文献

参考文献20

  • 1何楚,尹莎,许连玉,廖紫纤.基于局部重要性采样的SAR图像纹理特征提取方法[J].自动化学报,2014,40(2):316-326. 被引量:8
  • 2种衍文,匡湖林,李清泉.一种基于多特征和机器学习的分级行人检测方法[J].自动化学报,2012,38(3):375-381. 被引量:28
  • 3Ren X F, Ramanan D. Histograms of sparse codes for object detection. Computer Vision and Pattern Recognition (CVPR), 2013: 3246-3253. 被引量:1
  • 4朱海龙,刘鹏,刘家锋,唐降龙.人群异常状态检测的图分析方法[J].自动化学报,2012,38(5):742-750. 被引量:17
  • 5Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006, 2: 2169-2178. 被引量:1
  • 6Shotton J, Blake A, Cipolla R. Contour-based learning for object detection. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing: IEEE, 2005, 1: 503-510. 被引量:1
  • 7Ferrari V, Fevrier L, Jurie F, Schmid C. Groups of adjacent contour segments for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(1): 36-51. 被引量:1
  • 8Toshev A, Taskar B, Daniilidis K. Shape-based object detection via boundary structure segmentation. International Journal of Computer Vision, 2012, 99(2): 123-146. 被引量:1
  • 9Ferrari V, Jurie F, Schmid C. From images to shape models for object detection. International Journal of Computer Vision, 2010, 87(3): 284-303. 被引量:1
  • 10Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916. 被引量:1

二级参考文献45

共引文献100

同被引文献183

引证文献18

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部