期刊文献+

基于GA-BP和POS-BP神经网络的光伏电站出力短期预测 被引量:71

Short-term prediction of photovoltaic power generation output based on GA-BP and POS-BP neural network
下载PDF
导出
摘要 当前在光伏电站出力短期预测方面较多的采用BP或者优化的BP神经网络算法,存在采用的优化算法单一、缺乏多种优化算法比较选优、预测误差大的问题。基于本地5 k W小型分布式光伏电站,综合考虑影响光伏出力的太阳光辐射强度、环境温度、风速气象相关因素和光伏电站历史发电数据,分别采用BP以及遗传算法和粒子群算法优化的BP神经网络算法—GA-BP和POS-BP构建了晴天、多云、阴雨三种天气条件下光伏出力短期预测模型。实测结果表明,三种神经网络算法预测模型在三种不同天气条件下均达到了一定的预测精度。其中GA-BP、POS-BP相比传统的BP预测模型降低了预测误差,且POS算法相比GA算法对于BP神经网络预测模型的优化效果更好,进一步降低了预测误差,适用性更强。 In the current PV output short-term forecast, BP or optimization BP neural network algorithm is used commonly, which has problems of single optimization algorithm, the lack of a variety of optimization algorithms for comparison and selection, and big forecast error. Therefore, based on local 5 kW small-scale distributed PV power station, considering the related factors that influence PV output such as solar radiation intensity, environmental temperature, wind speed and historical generation data of photovoltaic power station, this paper uses BP, GA-BP and POS-BP neural network algorithm respectively to construct short-term prediction model of PV output in sunny, cloudy and rainy weather conditions. Test results show that three kinds of neural network prediction models all reach certain prediction accuracy under three different weather conditions, among which GA-BP and POS-BP prediction models reduce the prediction errors compared to the traditional BP model, and POS algorithm has a better optimization effect on BP neural network prediction model and a stronger applicability compared to GA algorithm, and further reduces the prediction errors.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2015年第20期83-89,共7页 Power System Protection and Control
基金 智能教育与信息工程黑龙江省高校重点实验室开放课题(SEIE2014-05) 齐齐哈尔市科技局工业攻关项目(GYGG-201106)
关键词 BP神经网络算法 GA-BP算法 POS-BP算法 光伏发电短期预测 BP neural network algorithm GA-BP algorithm POS-BP algorithm photovoltaic power short-termprediction
  • 相关文献

参考文献14

二级参考文献146

共引文献615

同被引文献739

引证文献71

二级引证文献918

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部