期刊文献+

多智能体蝙蝠算法在无线传感器中的应用 被引量:3

The Multi-Agent Bat Algorithm Applied to Wireless Sensor Networks
下载PDF
导出
摘要 针对无线传感器网络(WSNs)节点的定位误差较大的问题,提出了一种新的具有局部搜索能力强的多智能体蝙蝠算法。改进算法中对寻优蝙蝠个体融入多智能体技术,通过邻域竞争合作算子以及自学习过程提高了算法全局搜索能力,避免算法陷入局部最优,加快算法的收敛速度。通过对标准测试函数的仿真,改进算法相比于其他算法,寻优精度和进化效率得到了较大的提高。随后采用多智能体蝙蝠算法求解无线传感节点定位问题,仿真结果表明改进算法减少了测距误差对定位精度的影响,提高了未知节点定位的精度,为无线传感网络节点定位的实际应用提供理论参考。 In order to solve the node location error in wireless sensor networks (WSNs), this paper proposes a new multi-agent bat algorithm, which possesses favorable local searching ability. In the proposed algorithm, the bat indi- vidual is a agent, which could compete and cooperate with its agent neighbor areas to improve the efficiency of local searching. In this way the multi-agent bat algorithm (MA-BA)could avoid the algorithm into a local optimum and in- crease the convergence speed. Simulation results for standard test functions indicate that the proposed algorithm re- markably improves the global optimizing ability and evolutionary efficiency compared to other algorithms. Through implementing the MA-BA to node location prediction, the precision of the unknown node location could be im- proved due to decreasing the ranging error and has a certain significance to practical application of wireless sensor network node localization.
出处 《传感技术学报》 CAS CSCD 北大核心 2015年第9期1418-1424,共7页 Chinese Journal of Sensors and Actuators
基金 浙江省自然科学基金青年基金项目(LQ13F010010) 浙江省重点科技创新团队项目(2013TD03)
关键词 无线传感网络节点定位 多智能体 蝙蝠算法 定位精度 WSNs node localization multi-agent bat algorithm accuracy
  • 相关文献

参考文献16

二级参考文献130

共引文献536

同被引文献28

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部