期刊文献+

自适应调整选择压力的灾变元胞遗传算法 被引量:8

Self-adaptive Cellular Genetic Algorithms with Disaster Based on Selection Pressure
下载PDF
导出
摘要 对于遗传算法而言,全局探索和局部寻优能力之间的平衡影响算法的性能,选择压力就代表着这个平衡。只有当全局探索和局部寻优之间的平衡达到最佳化才能够使算法又快又精确的寻求到全局最优解。随着算法运行,种群结构不断的变化,选择压力也在不断变化。分析研究了灾变元胞遗传算法的选择压力,根据种群多样性和种群收敛度,提出一种基于灾变参数调节选择压力的自适应元胞遗传算法。通过两个典型函数优化实验,表明选择压力自适应调节可提高算法性能,并得出这两个函数在寻优过程中的最佳选择压力变化规律,这为自适应算法设计提供了一种新的途径。 For the GA, the trade-off between exploration and exploitation may affect the performance of the algorithm. Only when the trade-off reaches optimization, the algorithm can search the global optimal solution quickly and accurately. As the algorithm runs generation by generation, the construction of population changes unceasing, and the selection pressure is changed too. A self-adaptive algorithm was put forward based on the population diversity and convergence degree to ensure the selection pressure, and adjust the selection pressure by changing disturbances parameter, and the change rule of the best selection pressure for some class problem can be found out. As the two typical functions optimize problem, the experiment indicates that the selection pressure self-adaptive can advance the performance of the algorithm.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第3期436-440,444,共6页 Journal of System Simulation
基金 国家自然科学基金(60963002) 江西省教育厅科技研究项目(GJJ08209)
关键词 选择压力 灾变参数 多样性 元胞自动机 遗传算法 selection pressure disturbances parameter diversity celluar automata genetic algorithms
  • 相关文献

参考文献9

  • 1徐宗本,高勇.遗传算法过早收敛现象的特征分析及其预防[J].中国科学(E辑),1996,26(4):364-375. 被引量:99
  • 2Enrique Alba, Bemabe Dorronsoro. Cellular Genetic Algorithms[M]. Germany: Spring Science Media, LLC, 2008. 被引量:1
  • 3Michael Kirley. A Cellular Genetic Algorithm with Disturbance:Optimization Using Dynamic Spatial Interactions [J], Journal ofHeuristics (S1381-1231),2002, 8(3): 327-331. 被引量:1
  • 4David E Goldberg, Kalyanmoy Deb. A comparative analysis ofselection schemes used in genetic algorithms [C]// Foundations ofGenetic Algorithms. Beijing, China: Beijing Yanshan PublishingHouse, 2005: 69-93. 被引量:1
  • 5Enrique Alba, Gabriel Luque. Theoretical Models of SelectionPressure for dEAs: Topology Influaice [C]// The 2005 IEEE Congresson In Evolutionary Computation. USA: IEEE, 2005: 214-221. 被引量:1
  • 6D Simoncini, S Verel, P Collard, M Clergue. Anisotropic selectionin cellular genetic algorithms [C]// Genetic and EvolutionaryComputation Conference, Washington, USA, July 2006. America:ACM, 2006: 559-566. 被引量:1
  • 7E Alba, J M Troya. Cellular evolutionary algorithms: Evaluating theinfluence of ratio [C]// International conference on parallel problemsolving from nature, Paris, France. Berlin, Germany: Springer,ALLHMAGNE ETATS-UNIS (Monographie), 2000,19(17): 29-38. 被引量:1
  • 8何琳,王科俊,李国斌,金鸿章.遗传算法种群多样性的分析研究[J].哈尔滨工程大学学报,1999,20(4):27-33. 被引量:12
  • 9王小平,曹立明著..遗传算法 理论、应用与软件实现[M].西安:西安交通大学出版社,2002:344.

二级参考文献4

共引文献109

同被引文献72

  • 1方震,赵湛,郭鹏,张玉国.基于RSSI测距分析[J].传感技术学报,2007,20(11):2526-2530. 被引量:265
  • 2焦磊,邢建平,张军,张璇,赵朝丽.一种非视距环境下具有鲁棒特性TOA无线传感网络定位算法[J].传感技术学报,2007,20(7):1625-1629. 被引量:19
  • 3D Whitley. Cellular genetic algorithms [ C ]. Proc. of the Fifth In-ternational Conference on Genetic Algorithms (ICGA) , MorganKaufmann, 1993: 658 -659. 被引量:1
  • 4G Rudolph, J Sprave. A Cellular Genetic Algorithm with Self -Adjusting Acceptance Threshold [ C ]. Genetic Algorithms in Engi-neering Systems : Innovations and Applications on IEE, 1995 : 365-372. 被引量:1
  • 5G Folino, C Pizzuti, G Spezzano. A cellular genetic programmingapproach to classification[ C ]. Proc. of the Genetic and Evolution-ary Computation Conference ( GECCO - 99 ) , Morgan Kaufmann,1999: 1015 -1020. 被引量:1
  • 6W Kim, W Man, S Chi. Adding learning to cellular genetic algo-rithms for training recurrent neural networks [ J]. IEEE Transac-tions on Neural Networks, 1999,10(2) :239 -252. 被引量:1
  • 7D Bemabe, A Enrique. A Simple Cellular Genetic Algorithm forContinuous Optimization [ C ]. IEEE Congress on EvolutionaryComputation, 2006:2838 - 2844. 被引量:1
  • 8V Gordon, K Mathias, D Whitley. Cellular genetic algorithms asfunction optimizers : Locality effects [ C ]. In ACM Symposium onApplied Computing, 1994:237 - 241. 被引量:1
  • 9E Alba, B Dorronsoro. The Exploration/Exploitation Tradeoff inDynamic Cellular Genetic Algorithms [ J ] . IEEE Trans, on Evolu-tionary Computation, 2005 ,9(2) : 126 - 142. 被引量:1
  • 10E Alba, J Troya. Cellular Evolutionary Algorithms: Evaluating the Influence of Ratio[ C ]. Proceedings of the 6th International Con- ference on Parallel Problem Solving from Nature, 2000:29 - 38. 被引量:1

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部