期刊文献+

基于Hopfield NN遗传优化设计的板形缺陷识别研究 被引量:1

Research on flatness defect identification via genetic optimization design of Hopfield NN
下载PDF
导出
摘要 针对Hopfield NN传统设计方法要求权值矩阵需要满足对称的约束,以及记忆容量和容错性低,且记忆模式易陷入伪稳定状态的缺点,本文提出了利用遗传算法(GA)优化设计Hopfield NN权值的方法,并与传统方法对比,验证了GA-Hopfield NN具有较大的记忆容量和较强的容错性。同时提出了GA-Hopfield NN的板形模式识别模型设计方案,将具有较强计算能力的反馈网络用于实时信息处理系统实现模式识别,克服了当前板形智能识别模型动态性差,容错能力低及实时性差的缺陷。同时,Hopfield NN的二值计算形式大大提高了系统的运算速度,为硬件实现和工程应用提供了新思路。 A genetic algorithm (GA) to optimize weights of Hopfield NN ( called GA-Hopfield NN structure) is proposed in the light of disadvantages of the traditional design method for Hopfield NN, such as low memory capacity and error tolerant, memory models easily falling into the pseudo steady state, and weight matrix requested to be symmetry.GA-Hopfield NN has a larger memory capaci- ty and a stronger error tolerant than that of traditional methods.A new flatness pattern recognition model based on GA-Hopfield NN is also set up.Feedback network that has strong computing ability is applied into real time information handling system to realize pat- tern recognition.Many defects that exists in current flatness intelligent recognition model (such as poor dynamic, low error tolerant and bad real-time) are conquered.Meanwhile, Hopfield NN adopts binary calculation form, improves the operation speed of the sys- tem greatly, and provides a new way of the hardware realization and engineering application.
出处 《燕山大学学报》 CAS 北大核心 2015年第3期235-240,共6页 Journal of Yanshan University
基金 河北省自然科学基金钢铁联合研究基金资助项目(E2015203354) 河北省高校创新团队领军人才培育计划项目(LJRC013)
关键词 HOPFIELD NN 容错性 遗传算法 板形识别 Hopfield NN fault-tolerant genetic algorithm flatness pattern recognition
  • 相关文献

参考文献9

二级参考文献71

共引文献79

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部