期刊文献+

基于改进的磷虾群优化算法的汽轮机初压优化研究 被引量:13

Optimization on Initial Pressure of a Steam Turbine Based on Improved Krill Herd Algorithm
下载PDF
导出
摘要 以求解汽轮机变工况运行时的最优主蒸汽压力为目标,首先根据汽轮机运行数据,利用回声状态网络(ESNs)建立热耗率预测模型,然后利用改进的磷虾群优化(I-KH)算法的全局搜索能力,在可行的主蒸汽压力范围内对所建预测模型进行主蒸汽压力寻优,并将优化后的汽轮机滑压运行曲线与厂家设计压力曲线进行对比.结果表明:优化后机组各个负荷下对应的热耗率均有所下降;按照优化后的汽轮机滑压运行曲线运行可有效降低机组热耗率. To obtain the optimal main steam pressure of a steam turbine under variable working conditions, a heat rate prediction model was established using operating data o{ the turbine by echo state networks (ESNs), with which the optimal initial steam pressure was searched in the range of permitted pressure by taking use of the global searching ability of improved krill herd algorithm (I-KH), and the optimized tur- bine sliding pressure operation curve was compared with the design curve. Results show that the unit heat rate reduces at various loads after optimization, which could be effectively lowered if the turbine runs ac- cording to the optimized sliding pressure operation curve.
出处 《动力工程学报》 CAS CSCD 北大核心 2015年第9期709-714,共6页 Journal of Chinese Society of Power Engineering
基金 国家自然科学基金资助项目(60774028) 河北省自然科学基金资助项目(F2010001318)
关键词 汽轮机 热耗率 回声状态网络 磷虾群优化算法 最优初压 steam turbine heat rate echo state network krill herd algorithm optimal initial steam pres-sure
  • 相关文献

参考文献13

  • 1胡勇,刘吉臻,曾德良,彭灿,李雅哲.定负荷下火电机组最优运行初压的确定[J].动力工程学报,2013,33(9):733-738. 被引量:7
  • 2施延洲,焦林生,姚啸林,钟平,邵文长.超(超)临界汽轮机组滑压运行优化试验[J].热力发电,2013,42(12):8-12. 被引量:26
  • 3韩敏,许美玲,王新迎.多元时间序列的子空间回声状态网络预测模型[J].计算机学报,2014,37(11):2268-2275. 被引量:15
  • 4GANDOMI A H, ALAVI A H. Krill herd: a new bio-inspired optimization algorithm[J]. Communica- tions in Nonlinear Science and Numerical Simulation, 2012,17(12) : 4831-4845. 被引量:1
  • 5KARABOGA D, OZTURK C. A novel clustering ap- proach: artificial bee colony(ABC) algorithm[J]. Ap- plied Soft Computing, 2011, 11(1) : 652-657. 被引量:1
  • 6DEIHIMI A, SHOWKATI H. Application of echo state networks in short-term electric load forecasting [J]. Energy, 2012, 39(1): 327-340. 被引量:1
  • 7LIG, NIUP, ZHANGW, etal. Control of discrete chaotic systems based on echo state network modeling with an adaptive noise canceler[J]. Knowledge-Based Systems, 2012, 35(11): 35-40. 被引量:1
  • 8WANG G, GUO L, WANG H, et al. Incorporating mutation scheme into krill herd algorithm for global numerical optimization[J]. Neural Computing and Ap- plications, 2014, 24(3/4): 853-871. 被引量:1
  • 9LI J, TANG Y, HUA C, et al. An improved krill herd algorithm: Krill herd with linear decreasing step [J]. Applied Mathematics and Computation, 2014, 234(5) : 356-367. 被引量:1
  • 10WANGG G, GANDOMI A H, ALAVI A H. An effective krill herd algorithm with migration operator in biogeography based optimization [ J ]. Applied Mathematical Modeling, 2014, 38(9): 2454-2462. 被引量:1

二级参考文献61

共引文献61

同被引文献114

引证文献13

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部