期刊文献+

1∶1内共振对随机振动系统可靠性的影响 被引量:5

THE INFLUENCE OF ONE-TO-ONE INTERNAL RESONANCE ON RELIABILITY OF RANDOM VIBRATION SYSTEM
下载PDF
导出
摘要 研究了二自由度耦合非线性随机振动系统在高斯白噪声激励下基于首次穿越模型的可靠性问题.在1∶1内共振情形,原始系统的运动方程经平均后化为一组关于慢变量的伊藤随机微分方程.建立了后向柯尔莫哥洛夫方程以及庞德辽金方程,在一定的边界条件和(或)初始条件下求解这两个偏微分方程,分别得到系统的条件可靠性函数以及平均首次穿越时间.进而建立了无内共振情形系统的后向柯尔莫哥洛夫方程与庞德辽金方程.将无内共振情形的结果与1∶1内共振情形的结果做比较,发现1∶1内共振能显著降低系统可靠性.用蒙特卡罗数值模拟验证了理论结果的有效性. Based on first-passage model, the reliability problem of two degrees-of-freedom random vibration system under Gaussian white noise excitations is studied analytically. In the case of 1 : 1 internal resonance, the equations of motion of the original system are reduced to a set of Ito stochastic differential equations after averaging. The backward Kolmogorov equation and the Pontryagin equation, which determine the conditional reliability function and the mean first-passage time of the random vibration systems, are constructed under appropriate boundary and (or) initial conditions, respectively. To study the influence of the internal resonance on the reliability, the averaged It6 stochastic differential equations, the backward Kolmogorov equation and the Pontryagin equation in the case of non-internal resonance are also derived. Numerical solutions of high-dimensional backward Kolmogorov equation and Pontryagin equation are obtained. The results of resonant case and non-resonant case are compared. It is shown that 1 : 1 internal resonance can greatly reduce the reliability. All the analytical results are validated by Monte Carlo digital simulation.
出处 《力学学报》 EI CSCD 北大核心 2015年第5期807-813,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(11272201 11372271 11132007)~~
关键词 1:1内共振 平均法 可靠性函数 平均首次穿越时间 数值模拟 1: 1 internal resonance, averaging method, reliability function, mean first-passage time, digital simulation
  • 相关文献

参考文献22

  • 1吴志强,陈世栋,雷娜,宫明旭.三层结构模型的内共振和组合共振[J].振动与冲击,2014,33(8):1-3. 被引量:2
  • 2熊柳杨,张国策,丁虎,陈立群.黏弹性屈曲梁非线性内共振稳态周期响应[J].应用数学和力学,2014,35(11):1188-1196. 被引量:6
  • 3Karimpour H, Eftekhari M. Exploiting internal resonance for vibration suppression and energy harvesting from structures using an inner mounted oscillator. Nonlinear Dynamics, 2014, 77: 699-727. 被引量:1
  • 4Ji JC. Design of a nonlinear vibration absorber using three-to-one internal resonances. Mechanical Systems and Signal Processing , 2014, 42: 236-246. 被引量:1
  • 5Plaksiy KY, Mikhlin YV. Dynamics of nonlinear dissipative systems in the vicinity of resonance. Journal of Sound and Vibration , 2015, 334: 319-337. 被引量:1
  • 6Zhang YL, Chen LQ. External and internal resonances of the pipe conveying fluid in the supercritical regime. Journal of Sound and Vibration , 2013, 332: 2318-2337. 被引量:1
  • 7Sayed M, Kamel M. Non-linear normal forced vibration modes in systems with internal resonance. Applied Mathematical Modelling, 2012, 36: 310-332. 被引量:1
  • 8Beltrán-Carbajal F, Silva-Navarro G. Active vibration control in Duffing mechanical systems using dynamic vibration absorbers. Journal of Sound and Vibration, 2014, 333: 3019-3030. 被引量:1
  • 9Ji JC, Zhang N. Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber. Journal of Sound and Vibration, 2010, 329: 2044-2056. 被引量:1
  • 10Kerschen GT, Michael D. Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. Journal of Sound and Vibration, 2007, 299: 822-838. 被引量:1

二级参考文献25

共引文献43

同被引文献67

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部