期刊文献+

融合双密度双树小波与LLTSA的人脸识别算法 被引量:1

Face recognition based on double-density dual-tree complex wavelet and LLTSA
下载PDF
导出
摘要 双密度双树复小波对图像细节信息描述更加清晰,使用双密度双树复小波对人脸图像进行信息提取,可使图像中的信息更好的保留下来。针对Gabor小波进行特征提取时的频域重叠以及频域遗漏和双树复小波提取的方向信息确失,提出利用两种小波对人脸图像提取的特征信息进行组合,得到人脸图像的特征信息。再针对提取到的特征信息维数过多不利于信息处理,提出了利用LLTSA算法对经过小波变换得到的特征信息进行降维。在降维的过程中先利用改进的局部切空间排列算法进行降维,然后使用三阶近邻算法进行分类。实验结果表明:使用该算法在ORL及YALE人脸库进行的人脸识别较传统的识别算法的识别结果更好,识别速率更高。 Dual-density tree complex wavelet will obtain more clearer image details, so many researchers use it for face image information extraction which can be better preserved. However, due to the restriction of its direction and the overlap and omissions for frequency-domain information which is obtained from Gabor wavelet feature extraction, we combine the Dual-density tree complex wavelet and Gabor wavelet to extract the feature information for the face images. For the extracted feature information has a large number of dimension which is not conducive to information processing, so we try to use lltsa (Linear Local Tangent Space Alignment) to reduce the dimension information that is obtained through the wavelet transform. In the process of dimension reduction ,we first use the improved local tangent space alignment algorithm to reduce the dimension, and then use the third-order nearest neighbor algorithm for classification. Experimental results show that:this face recognition algorithm in ORL and YALE face database recognition have better results and higher recognition rate than traditional recognition algorithm.
出处 《电子设计工程》 2015年第17期179-181,共3页 Electronic Design Engineering
基金 河北工业大学博士科研项目(2009032012)
关键词 人脸识别 特征提取 双密度双数复小波 降维 局部切空间排列算法 face recognition feature extraction dual density double tree wavelet dimensionality reduction LLTSA
  • 相关文献

参考文献8

二级参考文献35

  • 1孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:143
  • 2周国民,陈勇,李国军.人脸识别中应用小波变换的两个关键问题[J].浙江大学学报(理学版),2005,32(1):34-38. 被引量:27
  • 3王伟,张佑生,方芳.人脸检测与识别技术综述[J].合肥工业大学学报(自然科学版),2006,29(2):158-163. 被引量:22
  • 4Mutelo R, Woo W, Dlay S. Discriminant Analysis of the Two- dimensional Gabor Features for Face Recognition[J]. IET Computer Vision, 2008, 2(2): 37-49. 被引量:1
  • 5Liu Chaochun, Dai Daoqing. Face Recognition Using Dual-tree Complex Wavelet Features[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2593-2599. 被引量:1
  • 6Selesnick I, Baraniuk R, Kingsbury N. The Dual-tree Complex Wavelet Transform[J]. IEEE Signal Processing Magazine, 2005, 22(6): 123-151. 被引量:1
  • 7Seung HS, Lee DD. The manifold ways of perception. Science, 2000,290(5500):2268-2269. 被引量:1
  • 8Donoho DL, Grimes C. Hessian Eigenmaps: New locally linear embedding techniques for high-dimensional data. Proc. of the National Academy of Sciences of the United States of American, 2003,100(10):5591-5596. 被引量:1
  • 9.[EB/OL].http://www.cse.msu.edu/~lawhiu/manifold/,. 被引量:1
  • 10Tenenbaum J, Silva VD, Langford J. A global geometric framework for nonlinear dimensionality reduction. Science, 2000,290(5500):2319-2323. 被引量:1

共引文献45

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部