期刊文献+

结合双树复小波变换和改进密度峰值快速搜索聚类的乳腺MR图像分割 被引量:12

Dual-Tree Complex Wavelet Transform and Improved Density Peak Fast Search and Clustering Method for Breast MR Image Segmentation
下载PDF
导出
摘要 针对乳腺MR图像组织复杂、灰度不均匀、难分割的特点,本文提出双树复小波(DTCWT)变换结合密度聚类的图像分割方法.首先利用复小波域双变量模型结合各向异性扩散函数对图像进行去噪处理;进而通过简单线性迭代聚类(SLIC)算法将图像划分成一定数量的超像素区域,根据事先设置的阈值搜索每个超像素的近邻,从而降低基于K近邻的密度峰值快速搜索聚类(KNN-DPC)算法寻找每个样本近邻的时间;最终,引入超像素区域的近邻信息度量样本密度,采用KNN-DPC算法的分配策略自适应聚类.仿真和临床数据分割结果表明,所提算法能有效的实现乳腺MR图像的分割. Breast MR image segmentation is difficult because of complex organization and intensity inhomogeneity.This paper proposes a segmentation method based on dual-tree complex wavelet transform and density clustering.Firstly,the image is denoised by using complex wavelet domain bivariate model combined with anisotropic diffusion function;Then simple linear iterative clustering(SLIC) algorithm is used to obtain the neighbors of each superpixel,thereby reducing the time of searching for the nearest neighbor of each sample in KNN-DPC algorithm.Finally,nearest neighbor sample density information of superpixel region is introduced,and distribution strategies from KNN-DPC algorithm are used for adaptive clustering.The segmentation results of simulation and clinical data show that the proposed algorithm can segment breast MR images effectively.
作者 范虹 张程程 侯存存 朱艳春 姚若侠 FAN Hong;ZHANG Cheng-cheng;HOU Cun-cun;ZHU Yan-chun;YAO Ruo-xia(School of Computer Science, Shaanxi Nornuil University, Xi' an, Shaanxi 710062, China;Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, Guangdong 518055 , China)
出处 《电子学报》 EI CAS CSCD 北大核心 2019年第10期2149-2157,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.11471004) 陕西省重点研发展计划(No.2018SF-251) 陕西省自然科学基金(No.2014JM2-6115)
关键词 乳腺MR图像分割 双树复小波变换 双变量模型 超像素分类 密度峰值快速搜索聚类 breast MR image segmentation dual tree complex wavelet transform bivariate model hyper pixel classification density peak fast search clustering
  • 相关文献

参考文献8

二级参考文献113

共引文献167

同被引文献85

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部