期刊文献+

一种基于像素梯度信息的背景减除法 被引量:9

Background Subtraction Based on Local Gradient Feature
下载PDF
导出
摘要 讨论了背景模型的更新参数与模型精度的关系。通过精确的梯度背景模型值间接估计当前帧中背景像素理论上的期望梯度值。以高斯模型为基础,将当前帧背景像素的实际梯度值与其理论上的期望值进行比较,计算偏差概率,以此为基础,形成不依赖于局部纹理的梯度特征的相似性度量方法。再用梯度特征的相似度量化地调整差分图像在各像素点处的二值化阈值,实现像素值信息与梯度信息的融合使用。实验表明,本方法对前景分割有一定的改善效果。 The relation between accuracy and the study speed of the background model was discussed. The theoretical gradient expectation was estimated with the accurate gradient background model. Based on Gaussian model, the proba- bility of the deviation between the actual gradient and its expectation was given, leading to a similarity measurement of the gradient feature using no texture message. The similarity was then used to adjust the threshold for binarization of the difference image, which means the fusing use of grey level message and the gradient message. Experiments show that the proposed method does have some improvement on foreground segmentation.
出处 《计算机科学》 CSCD 北大核心 2015年第8期300-304,共5页 Computer Science
关键词 背景减除法 噪声 高斯模型 梯度特征 相似度 预计算 Background subtraction, Noise, Gaussian model, Gradient feature, Similarity, Pre-calculation
  • 相关文献

参考文献18

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 2Stauffer C, Grimson W E L. Adaptive background mixture mo- dels for real-time tracking[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recogni- tion. Fort Collins,USA, 1999:23-25. 被引量:1
  • 3Wren C, Azarbayejani A, Darrell T, et al. Pfinder: realtime tracking of the human body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) : 780-785. 被引量:1
  • 4Tuzel O, Porikli F, Meer P. A Bayesian approach to background modeling[C]//Proceedings of IEEE Computer Society Confe- rence on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE, 2005 : 58-65. 被引量:1
  • 5Kim H, Sakamoto R, Kitahara I, et al. Background subtraction using generalised Gaussian family model[J]. IEEE Electronics Letters, 2008,44(3) .. 189-190. 被引量:1
  • 6Elgammal A, Duraisewami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estima- tion for visual surveillance[J]. Proceedings of IEEE, 2002, 90 (7):1151-1163. 被引量:1
  • 7Elgammal A, Harwood D, Davis L S. nonparametric model for background subtracting [C] // Proceedings of 6th European Conference on Computer Vision. Dublin, 2000:751-767. 被引量:1
  • 8Monnet A, Mittal A, Paragios N, et al. Background modeling and subtraction of dynamic scenes[C]//Proceedings of the 9th In- ternational Conference on Computer Vision. Washington DC, USA: IEEE, 2003 : 1305-1312. 被引量:1
  • 9Oa]a T,Pietikainen M, Maenpaa T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns[J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2002,24 (7) : 971-987. 被引量:1
  • 10Mason M,Duric Z. Using histograms to detect and track objects in color video[C]//Proeeedings of 30th Applied Imagery Pattern Recognition Workshop. Washington DC, USA: IEEE, 2001 : 154- 159. 被引量:1

二级参考文献137

  • 1陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,17(6):1278-1284. 被引量:13
  • 2向世明,陈睿,邓宇,李华.在线高斯混合模型和纹理支持的运动分割[J].计算机辅助设计与图形学学报,2005,17(7):1504-1509. 被引量:11
  • 3Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 23-25. 被引量:1
  • 4Wren C R, Azarbayejani A, Darrell T, Pentland A P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780--785. 被引量:1
  • 5Monnet A, Mittal A, Paragios N, Visvanathan R. Background modeling and subtraction of dynamic scenes. In: Proceedings of the 9th International Conference on Computer Vision. Washington D.C., USA: IEEE, 2003. 1305-1312. 被引量:1
  • 6Elgammal A, Duraiswami R, Harwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163. 被引量:1
  • 7Tuzel O, Porikli F, Meer P. A Bayesian approach to background modeling. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE, 2005. 58-65. 被引量:1
  • 8Kim H, Sakamoto R, Kitahara I, Toriyama T, Kogure K. Background subtraction using generalised Gaussian family model. IEEE Electronics Letters, 2008, 44(3): 189-190. 被引量:1
  • 9Mason M, Duric Z. Using histograms to detect and track objects in color video. In: Proceedings of the 30th Applied Imagery Pattern Recognition Workshop. Washington D.C., USA: IEEE, 2001. 154-159. 被引量:1
  • 10Matsuyama T, Ohya T, Habe H. Background subtraction for non-stationary scenes. In: Proceedings of Asian Conference on Computer Vision. Taipei, China: IEEE, 2000. 622-667. 被引量:1

共引文献324

同被引文献56

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部