摘要
针对备选方案的属性值为三角直觉模糊数且权重为实数的多属性决策问题,研究了三角直觉模糊数型VIKOR方法。首先,本文提出了一种基于偏好指标的三角直觉模糊数排序方法;其次,根据VIKOR方法的基本思想,提出了求解三角直觉模糊数型VIKOR方法的步骤,并在可接受优势和决策过程的稳定条件下对备选方案进行排序,得到折衷解;最后,在最大群体效用权重为0.5的情况下,用第三方物流服务商选择为例说明了该方法的有效性和可行性。
The aim of this paper is to extend VIKOR method which is a compromise ranking approach for multiple attribute decision making (MADM) problems for intuitionistie fuzzy multi-attributes analysis. VIKOR method with triangular intuitionistic fuzzy numbers is researched for solving MADM problems in which the ratings of alter- natives are expressed with triangular intuitionistic fuzzy numbers and the weights are real numbers. Firstly, a ranking method for triangular intuitionistic fuzzy numbers is proposed based on preference index. Secondly, ac- cording to the basic idea of VIKOR method, the steps of VIKOR method with triangular intuitionistic fuzzy num- bers are given, and then the compromise solution is obtained under the condition of acceptable advantage and ac- ceptable stability in decision making. Finally, the third party logistics providers selection example verifies the ef- fectiveness and feasibility of the proposed method when the weight of maximum group utility equals 0.5.
出处
《运筹与管理》
CSSCI
CSCD
北大核心
2015年第4期288-294,共7页
Operations Research and Management Science
基金
国家自然科学基金资助项目(71401003)
教育部人文社会科学研究青年基金项目(14YJC630114)
北京工商大学研究生科研能力提升计划资助项目
关键词
多属性决策
三角直觉模糊数
VIKOR方法
理想解
Multi-attribute decision making
Triangular intuitionistic fuzzy number
VIKOR method
Ideal solu-tion