摘要
This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is caused by the harmonic fluctuations of the axial moving speed. An integro-partial-differential equation governing the transverse vibration of the Timoshenko beam is established. Many factors are considered, such as viscoelasticity, the finite axial support rigidity, and the longitudinally varying tension due to the axial acceleration. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the governing equation. Based on the numerical solutions, the bifurcation diagrams are presented to study the effect of the external transverse excitation. Moreover, the frequencies of the two excitations are assumed to be multiple. Further, five different tools, including the time history, the Poincaré map, and the sensitivity to initial conditions, are used to identify the motion form of the nonlinear vibration. Numerical results also show the characteristics of the quasiperiodic motion of the translating Timoshenko beam under an incommensurable re- lationship between the dual-frequency excitations.
This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is caused by the harmonic fluctuations of the axial moving speed. An integro-partial-differential equation governing the transverse vibration of the Timoshenko beam is established. Many factors are considered, such as viscoelasticity, the finite axial support rigidity, and the longitudinally varying tension due to the axial acceleration. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the governing equation. Based on the numerical solutions, the bifurcation diagrams are presented to study the effect of the external transverse excitation. Moreover, the frequencies of the two excitations are assumed to be multiple. Further, five different tools, including the time history, the Poincaré map, and the sensitivity to initial conditions, are used to identify the motion form of the nonlinear vibration. Numerical results also show the characteristics of the quasiperiodic motion of the translating Timoshenko beam under an incommensurable re- lationship between the dual-frequency excitations.
基金
Project supported by the State Key Program of National Natural Science Foundation of China(No.11232009)
the National Natural Science Foundation of China(Nos.11372171 and 11422214)