期刊文献+

Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations 被引量:11

Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations
下载PDF
导出
摘要 This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is caused by the harmonic fluctuations of the axial moving speed. An integro-partial-differential equation governing the transverse vibration of the Timoshenko beam is established. Many factors are considered, such as viscoelasticity, the finite axial support rigidity, and the longitudinally varying tension due to the axial acceleration. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the governing equation. Based on the numerical solutions, the bifurcation diagrams are presented to study the effect of the external transverse excitation. Moreover, the frequencies of the two excitations are assumed to be multiple. Further, five different tools, including the time history, the Poincaré map, and the sensitivity to initial conditions, are used to identify the motion form of the nonlinear vibration. Numerical results also show the characteristics of the quasiperiodic motion of the translating Timoshenko beam under an incommensurable re- lationship between the dual-frequency excitations. This investigation focuses on the nonlinear dynamic behaviors in the trans- verse vibration of an axiMly accelerating viscoelastic Timoshenko beam with the external harmonic excitation. The parametric excitation is caused by the harmonic fluctuations of the axial moving speed. An integro-partial-differential equation governing the transverse vibration of the Timoshenko beam is established. Many factors are considered, such as viscoelasticity, the finite axial support rigidity, and the longitudinally varying tension due to the axial acceleration. With the Galerkin truncation method, a set of nonlinear ordinary differential equations are derived by discretizing the governing equation. Based on the numerical solutions, the bifurcation diagrams are presented to study the effect of the external transverse excitation. Moreover, the frequencies of the two excitations are assumed to be multiple. Further, five different tools, including the time history, the Poincaré map, and the sensitivity to initial conditions, are used to identify the motion form of the nonlinear vibration. Numerical results also show the characteristics of the quasiperiodic motion of the translating Timoshenko beam under an incommensurable re- lationship between the dual-frequency excitations.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第8期971-984,共14页 应用数学和力学(英文版)
基金 Project supported by the State Key Program of National Natural Science Foundation of China(No.11232009) the National Natural Science Foundation of China(Nos.11372171 and 11422214)
关键词 axially accelerating Timoshenko beam VISCOELASTICITY nonlinear dynamics parametric excitation external excitation axially accelerating Timoshenko beam, viscoelasticity, nonlinear dynamics,parametric excitation, external excitation
  • 相关文献

参考文献3

二级参考文献11

共引文献38

同被引文献69

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部