摘要
In this article, a Timoshenko beam with tip body and boundary damping is considered. A linearized three-level difference scheme of the Timoshenko beam equations on uniform meshes is derived by the method of reduction of order. The unique solvability, unconditional stability and convergence of the difference scheme are proved. The convergence order in maximum norm is of order two in both space and time. A numerical example is presented to demonstrate the theoretical results.
In this article, a Timoshenko beam with tip body and boundary damping is considered. A linearized three-level difference scheme of the Timoshenko beam equations on uniform meshes is derived by the method of reduction of order. The unique solvability, unconditional stability and convergence of the difference scheme are proved. The convergence order in maximum norm is of order two in both space and time. A numerical example is presented to demonstrate the theoretical results.
基金
the National High Technology Development Projects of China under contract(No.2004AA639830)
the foundation for senior talents of Laiyang agriculture institute under contract(No.630627).