摘要
We report the simulation and experimental results of 1.3-μm InGaAsP/InP multiple quantum well (MQW) electro-absorption modulators (EAMs). In this work, the quantum confined Stark effect of the EAM is system- atically analyzed through the finite element method. An optimized structure of the 1.3-μm InGaAsP/InP QW EAM is proposed for applications in 100 G ethernet. Then 1.3-μm InGaAsP/InP EAMs with f-3dB bandwidth of over 20 GHz and extinction ratio over 20 dB at 3 V bias voltage are demonstrated.
We report the simulation and experimental results of 1.3-μm InGaAsP/InP multiple quantum well (MQW) electro-absorption modulators (EAMs). In this work, the quantum confined Stark effect of the EAM is system- atically analyzed through the finite element method. An optimized structure of the 1.3-μm InGaAsP/InP QW EAM is proposed for applications in 100 G ethernet. Then 1.3-μm InGaAsP/InP EAMs with f-3dB bandwidth of over 20 GHz and extinction ratio over 20 dB at 3 V bias voltage are demonstrated.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 61274046,61474111 and 61321063
the National High-Technology Research and Development Program of China under Grant No 2013AA014202