期刊文献+

非交换Lorentz空间的遍历定理(英文)

Ergodic Theorems for Noncommutative Lorentz Spaces
下载PDF
导出
摘要 设(M,τ)是有限von Neumann代数。我们证明了非交换Lorentz空间Lp,q(M)的个体遍历定理. Let (M,τ) be a finite von Neumann algebra. We proved individual ergodic theorem in the noncommutative Lorentz spaces Lp,q(M).
出处 《新疆大学学报(自然科学版)》 CAS 北大核心 2015年第2期151-156,共6页 Journal of Xinjiang University(Natural Science Edition)
基金 Supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region(2013211A001)
关键词 非交换Lorentz空间 个体遍历定理 依测度几乎处处一致收敛 noncommutative lorentz space individual ergodic theorem almost uniform convergence in measure
  • 相关文献

参考文献2

二级参考文献20

  • 1T.别克.ON L^p-MATRICIALLY NORMED SPACES[J].Acta Mathematica Scientia,2005,25(4):681-686. 被引量:1
  • 2Arveson W B. Analyticity in operator algebras. Amer J Math, 1967, 89:578 642. 被引量:1
  • 3Blecher D P, Labuschagne L E. Applications of the Puglede-Kadison determinant: Szeg6 theorem and outers for noncommutative Hp. Trans Amer Math Soc, 2008, 360:6131-6147. 被引量:1
  • 4Brown L G. Lidskii's theorem in the type II ease//Geometric Methods in Operator Algebras (Kyoto 1983).Pitman Res Notes Math Ser, Vol 123. Harlow: Longmam Sei Tech, 1986:1 35. 被引量:1
  • 5Bekjan N, Xu Q. Riesz and Szeg5 type factorizations for noncommutative Hardy spaces. J Oper Theory, 2009, 62(1): 215-231. 被引量:1
  • 6Fack T, Kosaki H. Generalized s-numbers of T-measurable operators. Pacific J Math 1986, 123:269 300. 被引量:1
  • 7Fuglede B, Kadison R V. Determinant theory in finite factors. Ann Math, 1952, 55:520-530. 被引量:1
  • 8Hunt R A. On L(p,q) spaces. L'Enseignement Math, 1966, 12:249-276. 被引量:1
  • 9Han Yazhou, Bekjan T N. The dual of noncommutataive Lorentz spaces. Acta Math Sei, 2011, 31B(6): 2067 2O80. 被引量:1
  • 10Helson H, Lowdenslager D. Prediction theory and Fourier series in several variables. I. Acta Math, 1958, 99:165 202. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部