期刊文献+

基于语言无关性语义Kernel学习的短文本分类 被引量:1

SHORT-TEXT CLASSIFICATION BASED ON LANGUAGE-INDEPENDENT SKL
下载PDF
导出
摘要 针对传统的短文本分类方法大量使用语法标签和词库导致产生语言依赖的问题,提出一种基于语言无关性语义核学习的短文本分类方法。首先,利用短文本的语义信息从文档中提取模式;然后,以三个标注层(词、文档和类别)标注提取出的每个模式;最后,根据三个标注层次计算文档之间的相似度,并根据相似度完成分类。在英语和汉语数据集上的实验验证了该方法的有效性。实验结果表明,相比其他几种核方法,该方法取得了更好的分类性能。 The language dependence problem is generated due to that the short-text classification methods use a lot of grammar tags and thesaurus, for this issue we proposed a short-text classification method which is based on language-independent semantic kernel learning (SKL). First, it extracts patterns from document by making use of semantic information of short-text. Then, it labels every extracted pattern with three annotation layers (words, document and categories), Finally, it calculates the similarity between documents by three annotated layers and completes classification according to the similarity. The effectiveness of the proposed method has been verified by the experiments on English and Chinese datasets. Experimental results showed that the proposed method has better classification performance than several other kernel methods.
作者 易欣 郭武士
出处 《计算机应用与软件》 CSCD 2015年第7期314-318,共5页 Computer Applications and Software
关键词 短文本分类 语义核学习 相似性度量 语言无关性 标注层 模式语义标注 Short-text classification Semantic kernel Similarity measure Language independence Annotated layers Semantic annotation of patterns
  • 相关文献

参考文献16

二级参考文献149

共引文献98

同被引文献14

  • 1Chellappa R, Wilson C L, Sirohey S.Human and machine recognition of faces:a survey[J].Proceedings of the IEEE,1995,83(5):705-740. 被引量:1
  • 2Sahbi H. Kernel PCA for similarity invariant shape recognition [J]. The Journal of Neurocomputing, 2006, 70(16):3034-3045. 被引量:1
  • 3Chougdali K, Jedra M, Zahid N. Kernel Weighted Scatter-Difference-Based Discriminant Analysis for Face Recognition [My/Image Analysis and Recognition. Springer Berlin Heidelberg,2008:977-983. 被引量:1
  • 4Liu J, Chen S. Resampling LDMQR and PCA+ LDA for face recognition [M]//AI 2005: Advances in Artificial Intelligence. Springer Berlin Heidelberg,2005:1221- 1224. 被引量:1
  • 5Perlibakas V. Distance Measures for PCA-based Face Recognition [J].Pattem Recognition,2004,25 (6): 711-724. 被引量:1
  • 6Brodi D, Doki B. Reference text line identification using Gaussian kernel extended by morphological operations [C]//MIPRO, 2010 Proceedings of the 33rd International Convention. IEEE,2010:722-727. 被引量:1
  • 7Phillips P J, Moon H, Rauss P, et al. The FERET Evaluation Methodology for Face -Recognition Algorithms [J].IEEE Transactions on Pattern Analysis& Machine Intelligence,2000,22(lO):1090-1104. 被引量:1
  • 8Sire T, Baker S, Bsat M. The CMU pose, illumination, and expression database [J]. Pattern Analysis & Machine Intelligence IEEE Transactions on, 2003,25 (12):1615-1618. 被引量:1
  • 9Martinez A M, Kak A C. PCA versus LDA [J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2001,23(2):228-233. 被引量:1
  • 10Kim K I, Jung K, Hang J K. Face Recognition Using Kernel Principal Component Analysis [J]. IEEE Signal Processing Letters, 2002,9(2):40-42. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部