期刊文献+

石化装置BN拓扑结构节点同异反概率重要度分析

Probability importance degree analysis of nodes in petrochemical device BN topological structure
下载PDF
导出
摘要 为解决石化装置贝叶斯网络(BN)拓扑结构节点状态不确定系统难以分析节点重要度的问题,借助广义集对分析(GSPA)理论探讨节点重要度。针对节点的不同逻辑关系,讨论基于GSPA理论与BN方法集成的节点状态概率表达方式。从同一性、差异性、对立性3方面,提出节点同异反概率重要度分析方法,并将其应用到某反应器火灾爆炸事件的BN拓扑结构中。结果表明:各根节点故障状态概率会影响该反应器火灾爆炸事件发生概率,各根节点联系度同一性、差异性、对立性不同,会产生不同的同异反概率重要度分布情形。 GSPA theory was used to solve the problem that the importance degree of node state uncertain system of BN topology structure on petrochemical device is difficult to analyze. Bearing in mind different logical relations between nodes,a way was discussed for expressing node state probabilities based on BN and general set pair analysis. Taking into account identity,difference,and opposition between nodes,a method was worked out for evaluating probability importance degrees of nodes. The method was applied to BN topological structure for fire and explosion event in a certain reactor. Results show that state probabilities of root nodes affect the probability of reactor fire and explosion event,among other things.
出处 《中国安全科学学报》 CAS CSCD 北大核心 2015年第6期81-85,共5页 China Safety Science Journal
基金 辽宁省自然科学基金资助(2013020137) 辽宁省教育厅科学研究一般项目(L2012060)
关键词 石化装置 广义集对分析(GSPA) 贝叶斯网络(BN) 同异反 概率重要度 联系度 petrochemical device general set pair analysis (GSPA) Bayesian network ( BN ) same different and opposite probability importance degree connection degree
  • 相关文献

参考文献11

  • 1吴贤国,丁保军,张立茂,陈跃庆,薛莉敏,宋若昕.基于贝叶斯网络的地铁施工风险管理研究[J].中国安全科学学报,2014,24(1):84-89. 被引量:55
  • 2马德仲,丁文飞,刘圣楠,蒋永清,周真.基于贝叶斯网络的地下空间火灾风险评估方法研究[J].中国安全科学学报,2013,23(11):151-156. 被引量:19
  • 3RInari Helle, Tiina Lecklin, Ari Jolma, et al. Modeling the effectiveness of oil combating from an ecological perspective- A Bayesian network for the Gulf of Finland: The Baltic sea[J]. International Journal of Approximate Reasoning, 2011, 185(1) :182 - 192. 被引量:1
  • 4CAI Bao-ping, LIU Yong-hong, ZHANG Yun-wei, et al. Dynamic Bayesian networks based performance evaluation of subsea blowout preventers in presence of imperfeet rcpair[J]. Expert Systems with Applieations, 2013, 40(18) :7 544 -7 554. 被引量:1
  • 5Maria Hanninen, Pentti Kujala. Bayesian network modeling of port state eontrol inspection findings and ship aeeident involvement[J]. Expert Systems with Applieations, 2014, 41(4) :1 632 - 1 646. 被引量:1
  • 6CAI Bao-ping, LIU Yong-hong, FAN Qian, et al. Performance evaluation of subsea BOP control systems using dynamic Bayesian networks with imperfect repair and preventive maintenanee[J]. Engineering Applications of Arti eial Intelli- genee, 2013, 26(10) :2 661 -2 672. 被引量:1
  • 7李健行,夏登友,武旭鹏.基于贝叶斯网络的高层建筑火灾后果预测模型[J].中国安全科学学报,2013,23(12):54-59. 被引量:9
  • 8Young-Seol Lee, Sung-Bae Cho. Mobile context inference using two-layered Bayesian networks for smartphones [ J ]. Expert Systems with Applications, 2013, 40(11) :d 333 - 4 345. 被引量:1
  • 9张兆宁,梁玉文.自由飞行下基于贝叶斯网络的碰撞风险研究[J].中国安全科学学报,2014,24(9):40-45. 被引量:17
  • 10K Etminani, M Nagbibzadeh, A R Razavi. Effective pruning strategies for branch and bound Bayesian networks structure learning from data[J]. Scientia Iranica D, 2013, 20(3):682 -694. 被引量:1

二级参考文献52

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部