期刊文献+

基于非线性卡尔曼滤波的车辆定位优化算法 被引量:2

An Optimization Algorithm of Vehicle Positioning Based on Nonlinear Kalman Filter
下载PDF
导出
摘要 智能交通系统(ITS)是未来交通系统发展的重要趋势,为了实现智能交通所提供的各种功能,必须获知车联网中车辆的准确位置。因此,如何快速准确地实现车辆定位是现代智能交通系统所要研究的一个重要问题。实际系统中一般都是非线性系统,所以需要采用非线性的卡尔曼滤波算法。文中采用了非线性无迹卡尔曼滤波算法。无迹卡尔曼滤波在车辆运动状态发生突变时,车辆定位精度有所下降。为了提高无迹卡尔曼滤波算法在车辆运动状态发生突变时的定位精度,文中将自适应的交互多模算法和无迹卡尔曼滤波算法相结合,进一步提高了车辆的定位精度,同时也更能适应车辆的各种机动运动状态。仿真实验结果表明,交互多模无迹卡尔曼滤波算法的定位精度相较于无迹卡尔曼滤波算法有显著提升。 Intelligent Transportation Systems (ITS) is an important trend in the development of future transport systems. In order to provide the various functions ,the system should acquire the exact position of the vehicle. How to achieve accurate and rapid vehicle position is an important issue which modern intelligent transportation systems must go to research. The actual systems are generally nonlinear system, so a nonlinear unscented Kalman filter algorithm is used. When the vehicle is in motion is mutated, the accuracy of unscented Kalman filter algorithm is declined. Due to improving the accuracy of vehicle position while the vehicle is motor-driven, the interacting mul- tiple model algorithm is combined with the unscented Kalman filtering. At the same time, the improved algorithm can adapt to a variety of motion state of the vehicle. Simulation results show that the positioning accuracy of interacting multiple model unscented Kalman filtering algorithm is obviously better than unscented Kalman filtering algorithm.
作者 卞月根 张伟
出处 《计算机技术与发展》 2015年第8期80-83,89,共5页 Computer Technology and Development
基金 江苏省普通高校研究生科研创新计划项目(CXLX13_456)
关键词 车辆定位 卡尔曼滤波 交互多模算法 非线性模型 vehicle location unscented Kalman filter interacting multiple model algorithm non-linear model
  • 相关文献

参考文献15

  • 1梁伟,郑印,王沁艳,李盼,冯杰.智能交通系统消息交换的复杂度研究[J].计算机技术与发展,2014,24(1):81-84. 被引量:2
  • 2李鑫..提高GPS定位精度的改进卡尔曼滤波算法研究[D].南京理工大学,2004:
  • 3王建强,李世威,曾俊伟.车联网发展模式探析[J].计算机技术与发展,2011,21(12):235-238. 被引量:38
  • 4智勇..城市车辆定位系统的设计与实现[D].大连理工大学,2013:
  • 5张璇.分层线性模型的最大后验估计[J].统计与信息论坛,2011,26(1):10-15. 被引量:3
  • 6吴志华,丁杨斌,申功勋.改进的非线性鲁棒EKF算法及其应用[J].计算机工程与应用,2011,47(3):207-209. 被引量:4
  • 7Julier S J, Uhlmann J K. Unscented filtering and nonlinear es- timation[ J ]. Proceedings of the IEEE, 2004,92 ( 3 ) : 401 - 422. 被引量:1
  • 8Julier S J, Uhlmann J K. Reduced sigma point filters for the propagation of means and covariances through nonlinear trans- formations[ C]//Proceedings of the American control confer- ence. [ s. 1. ] :IEEE,2002:887-892. 被引量:1
  • 9Han Pengxin, Mu Rongjun. Effective fault diagnosis based on strong tracking UKF [ J ]. Aircraft Engineering and Aerospace Technology, 2011,83 ( 5 ) : 275-282. 被引量:1
  • 10唐苗苗..车载组合导航系统自适应无迹卡尔曼滤波算法研究[D].哈尔滨工程大学,2013:

二级参考文献61

共引文献80

同被引文献15

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部