期刊文献+

城市区域交通信号迭代学习控制策略 被引量:18

Iterative learning control strategy for traffic signal of urban area
原文传递
导出
摘要 城市交通流具有复杂的非线性动态特性,在交通控制中难以对其进行精确的数学建模;同时,以天为周期,宏观交通流又呈现出明显的周期性特征.鉴于此,提出一种基于迭代学习的城市区域交通信号控制策略,通过对交通信号的迭代控制,使路段的平均占有率收敛于期望占有率,从而使绿灯时间得到充分利用并防止交通拥堵的发生,保证了交通流在路网中的高效平稳运行.严格的理论推导证明了该方法的收敛性,仿真结果验证了该方法的有效性. The urban traffic flow has complex nonlinear dynamic behavior. It is very difficult to precisely model it in urban traffic control. Meanwhile, the macroscopic traffic flow appears apparent cyclical characteristics in one day cycle. Therefore,an iterative learning control strategy for signal timing of urban regional traffic is proposed. Through iterative control of the traffic signals, the average road occupancy rates in the regional traffic network achieve the desired ones. Thus, the green time is fully utilized and the traffic congestion is effectively prevented, which makes the traffic flow run more efficiently and smoothly in the network. With rigorous analysis, the proposed control scheme guarantees the asymptotic convergence along the iteration axis. The simulation results show the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2015年第8期1411-1416,共6页 Control and Decision
基金 国家自然科学基金重点项目(61134004)
关键词 交通控制 占有率 迭代学习控制 收敛性分析 traffic control occupancy rate iterative learning control convergence analysis
  • 相关文献

参考文献19

  • 1齐驰,侯忠生,贾琰.基于排队长度均衡的交叉口信号配时优化策略[J].控制与决策,2012,27(8):1191-1194. 被引量:15
  • 2Diakaki C. Integrated control of traffic flow in corridor road networks[D]. Chania: Technical University of Crete, 1999. 被引量:1
  • 3Diakaki C, Papageorgiou M, Aboudolas K. A multivariable regulator approach to traffic responsive network-wide signal control[J]. Control Engineering Practice, 2002, 10(1): 183-195. 被引量:1
  • 4Diakaki C, Dinopoulou V, Aboudolas K, et al. Extensions and new applications of the trafficresponsive urban control strategy: Coordinated signal control for urban networks [J]. Transportation Research Record, 2003, 1856:202-211. 被引量:1
  • 5Lin S, De Schutter B, Xi Y, et al. An efficient model- based method for coordinated control of urban traffic networks[C]. Proc of the 2010 IEEE Int Conf on Networking, Sensing and Control. Chicago: IEEE Press, 2010: 8-13. 被引量:1
  • 6Lin S, De Schutter B, Xi Y, et al. Efficient network- wide model-based predictive control for urban traffic networks[J]. Transportation Research Part C, 2012, 24(9): 122-140. 被引量:1
  • 7Lin S, De Schutter B, Xi Y, et al. Fast model predictive control for urban road networks via MILP[J]. IEEE Trans on Intelligent Transportation System, 2011, 12(3): 846- 856. 被引量:1
  • 8Zhongsheng Hou, Jianxin Xu, Jinwen Yan. An iterative learning approach for density control of freeway traffic flow via ramp metering[J]. Transportation Research Part C, 2008, 16(1): 71-97. 被引量:1
  • 9Arimoto S, Kawamura S, Miyazaki F. Better operation of robots by learning[J]. J of Robotic Systems, 1984, 1(2): 123-140. 被引量:1
  • 10孙明轩,黄宝健著..迭代学习控制[M].北京:国防工业出版社,1999:299.

二级参考文献9

  • 1DerongLiu.Approximate Dynamic Programming for Self-Learning Control[J].自动化学报,2005,31(1):13-18. 被引量:14
  • 2Allsop R E. Delay at a fixed time traffic signal I: Theoretical analysis[J]. Transportation Science, 1972, 6(3): 260-285. 被引量:1
  • 3Elahi S M, Radwan A E, Goul K M. Knowledge-based system for adaptivetraffic signal control[J]. Transportation Research Record, 1991, 1324(1): 115-122. 被引量:1
  • 4Chang T H, Lin J Y. Optimal signal timing for an oversaturated intersection[J]. Transportation Research, 2000, 34(6): 471-491. 被引量:1
  • 5Lewis F L, Vrabie D. Reinforcement learning and adaptive dynamic programming for feedback control[J]. IEEE Circuits and Systems Magazine, 2009, 9(3): 32-50. 被引量:1
  • 6Bai X R, Zhao D B, Yi J Q, et al. Ramp metering based on on-line ADHDP (A) controller[C]. Proc of 2008 Int Joint Conf on Neural Networks(IJCNN 2008). Hong Kong: IEEE Press, 2008: 1847-1852. 被引量:1
  • 7Xu J, Yu W S, Wang F Y. Ramp metering based on adaptive critic designs[C]. Proc of 9th Int IEEE Conf on Intelligent Transportation Systems. Toronto: IEEE Press, 2006: 1531-1536. 被引量:1
  • 8Hagan M T, Demut H B, Beale M. Neural network design[M]. Beijing: China Machine Press, 2002: 22-24. 被引量:1
  • 9赵冬斌,刘德荣,易建强.基于自适应动态规划的城市交通信号优化控制方法综述[J].自动化学报,2009,35(6):676-681. 被引量:39

共引文献14

同被引文献111

引证文献18

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部