期刊文献+

基于RBLDA模型和交互关系的微博标签推荐算法 被引量:1

RBLDA Model and Interaction Relation Algorithm for User Tags Recommendation in Microblog
下载PDF
导出
摘要 随着互联网技术的发展,个性化标签推荐系统在海量信息或资源过滤中起着重要的角色.在新浪微博平台中,用户可以自主的给自己添加标签来表明自己的兴趣爱好.同时,用户也可以通过标签来搜索与自己兴趣爱好相似的用户.针对新浪微博中大部分用户没有添加标签或添加标签数目较少的问题,提出了一种基于RBLDA模型和交互关系的微博标签推荐算法,它首先利用RBLDA模型来产生用户的初始标签列表,然后再结合用户的交互关系而形成的交互图来预测用户标签的算法.通过在新浪微博真实数据集上的实验发现,该方案与传统的标签推荐算法相比,取得了良好的实验效果. With the development of internet technology, the personalized tag recommendation system plays an important role in information or resources filtering. In Sina microblog website, an user can freely tag himself to indicate his interests. Meanwhile, users can also search other users who have the similar interests through tags. For the issue that there are no tags or few tags for the most users in Sina microblog website, an algorithm based on RBLDA model and users' interaction graph for tags recommendation is proposed in this paper. The algorithm utilizes the RBLDA model to produce the intial list of tags, and combines with users' interaction graph generated from actions of interaction between users to predict the final tags. The experimental results carried on some real data sets show that the proposed method performs better than traditional tag recommendation algorithms in comparison.
作者 余勇 郭躬德
出处 《计算机系统应用》 2015年第8期141-148,共8页 Computer Systems & Applications
关键词 个性化标签 标签推荐 主题模型 交互网络 新浪微博 personalized tag tag recommendation topic model interaction network Sina microblog
  • 相关文献

参考文献13

  • 1Sigurbj6msson B, Van Zwol R. Flickr tag recommendation based on collective knowledge. Proc. of the 17th International Conference on World Wide Web. ACM. 2008. 327-336. 被引量:1
  • 2徐彬,杨丹,张昱,李封,高克宁.面向微博用户标签推荐的关系约束主题模型[J].计算机科学与探索,2014,8(3):288-295. 被引量:8
  • 3王晟,王子琪,张铭.个性化微博推荐算法[J].计算机科学与探索,2012,6(10):895-902. 被引量:22
  • 4J/ischke R, Marinho L, Hotho A, et al. Tag recommendations in folksonomies. Knowledge Discovery in Databases: PKDD 2007. Springer Berlin Heidelberg, 2007:506-514. 被引量:1
  • 5Liu Z, Shi C, Sun M. FolkDiffusion: A graph-based tag suggestion method for folksonomies. Information Retrieval Technology. Springer Berlin Heidelberg, 2010:231-240. 被引量:1
  • 6Guan Z, Bu J, Mei Q, et al. Personalized tag recommendation using graph-based ranking on multi-type interrelated objects. Proc. of the 32nd International ACM SIGIR C(3nference on Research and Development in Information Retrieval. ACM. 2009. 540-547. 被引量:1
  • 7Zhou T, Ren J, Medo M, et al. Bipartite network projection and personal recommendation. Physical Review E, 2007, 76(4): 046115. 被引量:1
  • 8汪祥,贾焰,周斌,陈儒华,韩毅.基于交互关系的微博用户标签预测[J].计算机工程与科学,2013,35(10):44-50. 被引量:12
  • 9Harvey M, Baillie M, Ruthven I, et al. Tripartite hidden topicmoOe~s Ior personalise0 tag suggestion. Advances m Information Retrieval. Springer Berlin Heidelberg, 2010: 432-443. 被引量:1
  • 10Li DF, Ding Y, Sugimoto C, et al. Modeling topic and community structure in social tagging: the TTR-LDA Community model. Journal of the American Society for Information Science and Technology, 2011, 62(9): 1849-1866. 被引量:1

二级参考文献72

  • 1Kang J H, Lerman K, Plangprasopchok A. Analyzing Microblogs with affinity propagation [C] //Proc of the 1st KDD Workshop on Social Media Analytic. New York: ACM, 2010:67-70. 被引量:1
  • 2Ramage D, Dumais S, Liebling D. Characterizing microblogs with topic models [C] //Proc of Int AAAI Conf on Weblogs and Social Media. Menlo Park, CA: AAAI, 2010:130-137. 被引量:1
  • 3Xu R, Wunsch D. Survey of clustering algorithms [J]. IEEE Trans on Neural Networks, 2005, 16(3): 645-678. 被引量:1
  • 4Deerwester S, Dumais S, Landauer T, et al. Indexing by latent semantic analysis [J]. Journal of the American Society of Information Science, 1990, 41(6): 391-407. 被引量:1
  • 5Landauer T K, Foltz P W, Laham D. Introduction to Latent Semantic Analysis [J]. Discourse Processes, 1998, 25 (2) 259-284. 被引量:1
  • 6Griffiths T, Steyvers M. Probabilistic topic models [G] // Latent Semantic Analysis: A Road to Meaning. Hillsdale, NJ: Laurence Erlbaum, 2006. 被引量:1
  • 7Hofmann T. Probabilistic latent semantic indexing [C] // Proc of the 22nd Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 1999:50-57. 被引量:1
  • 8Salton G, McGill M. Introduction to Modern Information Retrieval [M]. New York: McGraw-Hill, 1983. 被引量:1
  • 9Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation [J]. The Journal of Machine Learning Research, 2003, 3: 993-1022. 被引量:1
  • 10Wei X, Croft W B. LDA-based document models for ad hoc retrieval [C] //Proc of the 29th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York:ACM, 2006:178-185. 被引量:1

共引文献224

同被引文献17

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部