期刊文献+

基于数学模型的激光焊接工艺下固体中工件温度场分析

Analysis of temperature field in the work piece under the process of solid laser welding based on mathematical model
下载PDF
导出
摘要 预测有关激光焊接工艺中固体工件的温度分布、峰值温度、冷却速度及热循环的广义理论。在没有发生熔化的区域(从熔化带边缘到高热影响区的末端区域),通过对移动的点热源或线热源进行分析表明,相比热源前后的温度梯度,前者远远高于后者,焊接速度的提高可拉长热源周围的等温线,原材料导热系数越高就会使等温线越圆并且可降低热源之前的温度梯度。工件的峰值温度决定着热影响区(HAZ)的大小。已知点的峰值温度是经历了热源之后的。热影响区范围随着净能量输入而增加。原材料经历的冷却速度决定着晶体的结构和形成的阶段。增加热输入可减少冷却速率;加焊接速度也可提高冷却速率;原材料的厚度和热导率的提高也会加速冷却速率。 The general theory about the prediction of laser welding process of solid temperature distribution in the work piece, the peak temperature,cooling rate and thermal cycling.In the absence of mehing region (from the melting zone edge to hyperthermia influenced the end regions) , via the moving point heat source or line source analysis shows that,compared with the temperature gradient heat before and after,the former is much higher than the latter,welding speed can improve the isotherm stretched around heat source, raw material thermal conductivity is high and will make isotherms more round and can reduce the temperature gradient heat before.The peak temperature of the work piece determines the heat affected zone (HAZ) size.The peak temperature of known points is after heat source.The heat affected zone range increases with the net energy input.The cooling rate of raw materials experience determines the crystal structure and the forming stage.The increase of heat input can reduce the cooling rate.However, increasing the welding speed can increase the cooling rate.The increase of thickness of raw materials and thermal conductivity will also speed up the cooling rate.
作者 崔小珂
出处 《电焊机》 2015年第7期110-116,共7页 Electric Welding Machine
关键词 数学模拟 激光焊接工艺 固体 工件温度场 mathematical simulation welding technology laser solid work piece temperature field
  • 相关文献

参考文献5

二级参考文献8

  • 1徐阳,王新兵.大功率连续CO2激光器[M].北京:国防工业出版社,2000. 被引量:1
  • 2Steen W M.Arc augmented laser processing of materials[J].Journal of Applied Physics,1980,51(11):5636-5641. 被引量:1
  • 3Goldak J A,Chakravarti A P,Bibby M.A new finite element model for welding heat sources[J].Metallurgical Transactions,1984,(15B):299-305. 被引量:1
  • 4Ueda Y,Yuan M G.A predicting method of welding residual stress using source of residual (report Ⅲ)[ J].Trans of Joining and Welding Research Institute,1993,22(1):157-168. 被引量:1
  • 5Luo Y,Murakawa H,Ueda Y.Prediction of welding deformation and residual stress by elastic FEM based on inherent strain (report Ⅰ)[J].Trans of Joining and Welding Research Institute,1997,26(2):49-57. 被引量:1
  • 6Ueda Y,Yamakawa T."Analysis of thermal elastic-plastic stress and strain during welding",IIW Doc.X-616-71(1971),also trans[J].Japan Welding Soc.,1971,2(2):90-100. 被引量:1
  • 7Yukio Ueda,Hidekazu Murakawa,Ahmed Mohamed Rashwan,et al.Development of computer aided process planning system for plate bending by line-heating (report 1)-relation between the final form of plate and the inherent strain[ J].Trans of Joining and Welding Research Institute,1991,20(2):129-139. 被引量:1
  • 8纪卓尚,刘玉君,孙振烈,金世良.船体曲面钢板水火加工成型工艺的理论与应用研究[J].中国造船,1998,39(A10):118-124. 被引量:14

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部