摘要
预测有关激光焊接工艺中固体工件的温度分布、峰值温度、冷却速度及热循环的广义理论。在没有发生熔化的区域(从熔化带边缘到高热影响区的末端区域),通过对移动的点热源或线热源进行分析表明,相比热源前后的温度梯度,前者远远高于后者,焊接速度的提高可拉长热源周围的等温线,原材料导热系数越高就会使等温线越圆并且可降低热源之前的温度梯度。工件的峰值温度决定着热影响区(HAZ)的大小。已知点的峰值温度是经历了热源之后的。热影响区范围随着净能量输入而增加。原材料经历的冷却速度决定着晶体的结构和形成的阶段。增加热输入可减少冷却速率;加焊接速度也可提高冷却速率;原材料的厚度和热导率的提高也会加速冷却速率。
The general theory about the prediction of laser welding process of solid temperature distribution in the work piece, the peak temperature,cooling rate and thermal cycling.In the absence of mehing region (from the melting zone edge to hyperthermia influenced the end regions) , via the moving point heat source or line source analysis shows that,compared with the temperature gradient heat before and after,the former is much higher than the latter,welding speed can improve the isotherm stretched around heat source, raw material thermal conductivity is high and will make isotherms more round and can reduce the temperature gradient heat before.The peak temperature of the work piece determines the heat affected zone (HAZ) size.The peak temperature of known points is after heat source.The heat affected zone range increases with the net energy input.The cooling rate of raw materials experience determines the crystal structure and the forming stage.The increase of heat input can reduce the cooling rate.However, increasing the welding speed can increase the cooling rate.The increase of thickness of raw materials and thermal conductivity will also speed up the cooling rate.
出处
《电焊机》
2015年第7期110-116,共7页
Electric Welding Machine
关键词
数学模拟
激光焊接工艺
固体
工件温度场
mathematical simulation
welding technology
laser solid
work piece temperature field