期刊文献+

基于用户喜好的个性推荐系统优化 被引量:1

Personalized Recommendation System Based on User Preferences
下载PDF
导出
摘要 采用协同过滤方式的传统推荐系统具有一定实用性,但也存在未考虑用户个性喜好的问题。为提高推荐精度,特别针对用户个性化特点和需求,提出了采用改进相似度计算和回归分析方法对协同过滤推荐进行系统优化。实验结果表明,优化算法可明显改善系统的推荐效果,并加强基于协同过滤推荐的有效性。 The traditional recommendation systems generally use collaborative filtering but merely consider the personality and individual preference. To enhance the recommendation quality,this paper proposed an approach to optimize the existing collaborative filtering recommendation system by adding the similarity calculation and regression analysis. The experimental results show the algorithm can significantly improve the quality of recommendation system and the collaborative filtering efficiency.
出处 《杭州电子科技大学学报(自然科学版)》 2015年第3期56-59,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省自然科学基金资助项目(LY13F010011)
关键词 个性化 推荐系统 回归分析 personalization recommendation system regression analysis
  • 相关文献

参考文献6

二级参考文献43

  • 1张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 2张锋,常会友.基于分布式数据的隐私保持协同过滤推荐研究[J].计算机学报,2006,29(8):1487-1495. 被引量:17
  • 3陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 4张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法[J].软件学报,2007,18(10):2403-2411. 被引量:192
  • 5Ma H, King I, Lyu M. Learning to recommend with social trust ensemble/ /Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Boston, USA, 2009: 203-210. 被引量:1
  • 6Ma H, Zhou D, Liu C, et al. Recommender systems with social regularization/ /Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong, China, 2011: 287-296. 被引量:1
  • 7Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks/ / Proceedings of the 4th ACM Conference on Recommender Systems. Barcelona, Spain, 2010: 135-142. 被引量:1
  • 8Bell R, Koren Y, Volin sky C. Modeling relationships at multiple scales to improve accuracy of large recommender systems/ /Proceedings of the 13th ACM SIGKDD Internationa I Conference on Knowledge Discovery and Data Mining. San Jose. USA. 2007: 95-104. 被引量:1
  • 9Onuma K. Tong H. Faloutsos C. Tangent: A novel'. surprise me'. recommendation algorithm/ /Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris. France, 2009: 657-666. 被引量:1
  • 10Musto C. Enhanced vector space models for content-based recommender systems/ /Proceedings of the 4th ACM Conference on Recommender Systems. Barcelona. Spain. 2010: 361-364. 被引量:1

共引文献187

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部