期刊文献+

Definition and Algorithms for Reliable Steiner Tree Problem 被引量:1

Definition and Algorithms for Reliable Steiner Tree Problem
原文传递
导出
摘要 This paper considers a new form of the Steiner tree problem that is more practical and reliable,which we call Reliable Steiner Tree(RST)problem.The authors give a detailed definition for this new problem and design both an exact algorithm and an approximation algorithm for it.The definition is based on the reliability of full components instead of Steiner vertices.The task is thus to find the most reliable full components to make up an optimum reliable Steiner tree.The exact algorithm designed for this problem utilizes a dynamic programming frame.The approximation algorithm designed in this paper exploits a local search strategy that looks for the best full component according to a selection function at a time.
机构地区 School of Mathematics
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第4期876-886,共11页 系统科学与复杂性学报(英文版)
基金 supported by National Natural Science Foundation of China under Grant Nos.71171189,71271204,11101420 Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No.KGCX2-RW-329
关键词 Approximation algorithm exact algorithm RELIABILITY steiner tree. Steiner树 近似算法 定义 Steiner点 成分组成 精确算法 动态规划 搜索策略
  • 相关文献

参考文献19

  • 1Karp R M, Reducibility Among Combinatorial Problems, Springer US, 1972. 被引量:1
  • 2Takahashi H and Matsuyama A, An approximate solution for the Steiner problem in graphs, Math. Jap., 1980, 24(6): 573-577. 被引量:1
  • 3Zelikovsky A, An 11/6-approximation algorithm for the network Steiner problem, Algorithmiea, 1993, 9:463 -470. 被引量:1
  • 4Berman P and Ramaiyer V, Improved approximations for the Steiner tree problem, Journal of Algorithms, 1994, 17: 381408. 被引量:1
  • 5Zelikovsky A, Better approximation bounds for the network and Euclidean Steiner tree problems, Technical report CS-96-06, University of Virginia, 1995. 被引量:1
  • 6PrSmel H J and Steger A, RNC-approximation algorithms for the Steiner problem, Proceedings of STACS 97, Springer Berlin Heidelberg, 1997. 被引量:1
  • 7Karpinski M and Zelikovsky A, New approximation algorithms for the Steiner tree problems, J. of Combinatorial Optimization, 1997, 1:47 -65. 被引量:1
  • 8Hougardy S and PrSmel H J, A 1.598 approximation algorithm for the Steiner problem in graphs, Proceedings of SODA, Society for Industrial and Applied Mathematics, 1999. 被引量:1
  • 9Robins G and Zelikovsky A, Tighter bounds for graph Steiner tree approximation, SIAM J. Discrete Math, 2005, 19(1): 122-134. 被引量:1
  • 10Byrka J, Grandoni, Fabrizio F, Rothvof3T, and Sanitk L, An improved LP-based approximation for Steiner tree, Proceedings of the 42nd ACM symposium on Theory of computing, ACM, 2010. 被引量:1

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部