期刊文献+

Implicit Variational Inclusions and Algorithms Involving (A, η)-monotone Operators in 2-uniformly Smooth Banach Spaces

Implicit Variational Inclusions and Algorithms Involving (A, η)-monotone Operators in 2-uniformly Smooth Banach Spaces
下载PDF
导出
摘要 This paper deals with a new class of nonlinear set valued implicit variational inclusion problems involving (A, η)-monotone mappings in 2-uniformly smooth Banach spaces. Semi-inner product structure has been used to study the (A, η)-monotonicity. Using the generalized resolvent operator technique and the semi-inner product structure, the approximation solvability of the proposed problem is investigated. An iterative algorithm is constructed to approximate the solution of the problem. Convergence analysis of the proposed algorithm is investigated. Similar results are also investigated for variational inclusion problems involving (H, η)-monotone mappings.
作者 N. K. Sahu
出处 《Journal of Mathematics and System Science》 2015年第6期269-278,共10页 数学和系统科学(英文版)
关键词 Semi-inner product space Generalized resolvent operator Variational inclusion 2-uniformly smooth Banach space. 巴拿赫空间 变分包含 算法构造 一致光滑 单调算子 收敛性分析 单调映射 预解算子
  • 相关文献

参考文献23

  • 1S. Adly, Perturbed algorithm and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl. 201 (1996),609-630. 被引量:1
  • 2R. P. Agarwal and R. U. Verma, General system of (A,Il)-maximal relaxed monotone variational inclusion problems based on generalized hybrid algorithms, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) 238-251. 被引量:1
  • 3R. Ahmad, M. Akram and J. C. Yao, Generalized monotone mapping with an application for solving a variational inclusion problem, J. Optim. Theory Appl. 157(2) (2013), 324-346. 被引量:1
  • 4X. P. Ding, Perturbed proximal point for generalized quasi-variational inclusions, J. Math. Anal. Appl. 210 (1997), 88- 10 1. 被引量:1
  • 5X. P. Ding and C. L. Luo, Perturbed proximal point algorithms for generalized quasi-variational like inclusions, J. Comput. Appl. Math. 210(2000), 153-165. 被引量:1
  • 6Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), 795-803. 被引量:1
  • 7J. R. Giles, Classes of semi-inner product spaces, Trans. A mer. Math. Soc. 129 (1967), 436-446. 被引量:1
  • 8N. J. Huang, A new class of generalized set valued implicit variational inclusions in Banach spaces with an application, Comput. Math. Appl. 41 (2001),937-943. 被引量:1
  • 9M. M. Jin, Iterative algorithm for a new system of nonlinear set-valued variational inclusions involving (H,I1)-monotone mappings, J. Inequal. Pure Appl. Math. 7(2) (2006), Article 72. 被引量:1
  • 10D. O. Koehler, A note on some operator theory in certain semi-inner product spaces, Proc. Amer. Math. Soc. 30(2) (1971),363-366. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部