期刊文献+

解决动态多中心问题的自学习差异进化算法 被引量:2

Self-learning differential evolution algorithm for dynamic polycentric problems
下载PDF
导出
摘要 为解决动态环境下的多中心优化问题,提出自学习差异进化算法。通过评估特定个体检测到环境变化,自学习算子将群体引至新的环境,并保持群体的拓扑结构不变,以继续当前的进化趋势。采用邻域搜索机制加快算法的收敛速度,引入随机个体迁入机制增加群体多样性。实验以周期动态函数为测试对象,比较自学习差异进化算法与部分智能优化算法的性能,结果表明,新算法有更快的收敛速度和更好的环境适应能力。 A novel self-learning differential evolution algorithm is proposed to solve dynamical multi-center optimization problems. The approach of re-evaluating some specific individuals is used to monitor environmental changes. The proposed self-learning operator guides the evolutionary group to a new environment, meanwhile maintains the stable topology structure of group to maintain the current evolutionary trend. A neighborhood search mechanism and a random immigrant mechanism are adapted to make a tradeoff between algorithmic convergence and population diversity. The experiment studies on a periodic dynamic function set suits are done, and the comparisons with peer algorithms show that the self-learning differential algorithm outperforms other algorithms in term of convergence and adaptability under dynamical environment.
出处 《通信学报》 EI CSCD 北大核心 2015年第7期166-175,共10页 Journal on Communications
基金 国家自然科学基金资助项目(61273232 41101425) 教育部新世纪优秀人才支持计划基金资助项目(NECT-2013-0785)~~
关键词 进化计算 动态优化 自学习机制 多中心动态优化问题 差异进化 evolutionary computation dynamic optimization self-learning mechanism multi-center dynamic optimization problems differential evolution
  • 相关文献

参考文献3

二级参考文献36

  • 1刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 2高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 3Shengxiang Yang,Renato Tinós.A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments[J].International Journal of Automation and computing,2007,4(3):243-254. 被引量:9
  • 4Cobb HG. An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environment. Technical Report, 6760, Washington: Naval Research Laboratory, 1990. 被引量:1
  • 5Morrison RW, de Jong KA. Triggered hypermutation revisited. In: Zalzala A, et al., eds. Proc. of the Congress on Evolutionary Computation. Piseataway: IEEE Service Center, 2000. 1025-1032. [doi: 10.1109/CEC.2000.870759]. 被引量:1
  • 6Vavak F, Fogarty TC, Jukes KA. A genetic algorithm with variable range of local search for tracking changing environments. In: Voigt HM, Rechenberg I, Schwefel HP, eds. Proc. of the Parallel Problem Solving From Nature IV. Berlin: Springer-Verlag, 1996. 376-385. [doi: 10.1007/3-540-61723-X_1002]. 被引量:1
  • 7Grefenstette JJ. Genetic algorithms for changing environments. In: Maenner R, Manderick B, eds. Proc. of the Parallel Problem Solving from Nature II. Elsevier Science Publishers, 1992. 137-144. 被引量:1
  • 8Cobb HG, Grefenstette JJ. Genetic algorithms for tracking changing environments. In: Forrest S, ed. Proc. of the 5th Int'l Conf. on Genetic Algorithms. San Francisco: Morgan Kaufmann Publishers, 1993. 523-530. 被引量:1
  • 9Goldberg DE, Smith RE. Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: Grefenstette JJ, ed. Proc. of the Int'l Conf. on Genetic Algorithms. Hillsdale: Lawrence Erlbaum Associates, 1987.59-68. 被引量:1
  • 10Hadad BS, Eick CF. Supporting polyploidy in genetic algorithms using dominance vectors. In: Angeline PJ, et al., eds. Proc. of the 6th Int'l Conf. on Evolutionary Programming. San Francisco: Morgan Kaufmann Publishers, 1997. 223-234. [doi: 10.1007/ BFb0014814]. 被引量:1

共引文献28

同被引文献41

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部