期刊文献+

求解动态优化问题的改进差分进化算法 被引量:4

Modified Differential Evolution for Dynamic Optimization Problems
下载PDF
导出
摘要 提出一种求解动态优化问题的改进差分进化算法.新算法将种群分为跟踪和搜索两个种群.通过监测跟踪种群的当前最优解和次优解来判断环境是否发生变化.发现环境变化时,重新计算种群适应值,分别找出变化后两个种群新的最优解.最优解好的种群,变为跟踪种群,保持不变,采用DE/best/1变异策略,在其最优解附近进行局部搜索;最优解差的种群,变为搜索种群,重新初始化,采用DE/rand/1变异策略全局搜索,扩大搜索范围,寻找新的最优解.搜索过程中,跟踪种群和搜索种群各负其责,相互配合提高了算法的搜索效率.比较跟踪和搜索种群的最优解,好的最优解作为动态优化问题的解.最后,用Dynamic Function1(DF1)函数对算法进行了验证,实验结果表明该算法可行有效. Modified differential evolution(MDE) is proposed for dynamic optimization problems. MDE divides the population into tracking group and searching group and judge whether there is a change in the enviroment by monitoring the extrema and hypo-extre- ma of the tracking group. When a change occurs, MDE revaluates the two groups, then finds their new extrema after change. The group with the better extremum will become the tracking group and keeps invariant, then adopts DE/best/1 to search locally around the better extremum. The other group will become the searching group and is re-initialized at random, then adopts DE/rand/1 to ex- tend the searching area and search globally. During the evolution, tracking and searching group take on different tasks and cooperate with each other. The searching efficiency of MDE is improved greatly. The extrema of the two groups are compared and the better one will be the solution of the dynamic optimization problem. The performance of MDE is tested using Dynamic Function 1. The re- sults show that the MDE is feasible and effective.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第12期2837-2840,共4页 Journal of Chinese Computer Systems
基金 国家″九七三″重点基础研究发展计划项目(973-61338)资助
关键词 差分进化算法 动态优化 多种群 differential evolution dynamic optimization multi-population
  • 相关文献

参考文献9

  • 1刘黎黎,王诗元,汪定伟.求解交货期可变动态调度问题的差分进化算法[J].东北大学学报(自然科学版),2011,32(2):183-187. 被引量:1
  • 2陈莉,丁立新.动态优化算法综述[J].武汉大学学报(理学版),2011,57(3):255-264. 被引量:6
  • 3Rainer Store, Kenneth Price, Lampinen J. Differential evolution-a practical approach to global optimization [ M ]. Springer,2005. 被引量:1
  • 4Janez Brest. Dynamic optimization using self-adaptive differential evolution [C]. IEEE Congress on Evolutionary Computation, 2009:415-422. 被引量:1
  • 5Uday K Chakraborty. Advances in differential evolution [ M ]. Springer, 2008. 被引量:1
  • 6单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 7Mathys C du Plessis, Andries P Engelbrecht. Improved differential evolution for dynamic optimization [ C ]. IEEE Congress on Evolu- tionary Computation,2008:229-234. 被引量:1
  • 8Jin Yao-chu, JUrgen Branke. Evolutionary optimization in uncertain environments-a survey [J]. IEEE Transactions on Evolutionary Computation,2005,9 ( 3 ) : 303-317. 被引量:1
  • 9Morrison R W, De Jong K A. A test problem generator for non-sta- tionary environments [ C ]. IEEE Congress on Evolutionary Com- putation, 1999:2047-2053. 被引量:1

二级参考文献24

  • 1Shengxiang Yang,Renato Tinós.A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments[J].International Journal of Automation and computing,2007,4(3):243-254. 被引量:9
  • 2Price K, Store R, Lampinen J. Differential evolution--a practical approach to global optimization [ M ]. Berlin:Spnnger, 2005. 被引量:1
  • 3Branke J. Evolutionary optimization in dynamic environments [M]. Dordrecht: Kluwer Academic Publishers, 2002. 被引量:1
  • 4Onwubolu G, Davendra D. Scheduling flow shops using differential evolution algorithm [J]. European Journal of Operational Research, 2006,171 (2) : 674 - 692. 被引量:1
  • 5Mendes R, Mohais A. DynDE: a differential evolution for dynamic optimization problems[ C]//Proceedings of the 2005 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2005:2808 - 2815. 被引量:1
  • 6Lung R I, Dumitrescu D. A collaborative model for tracking optima in dynamic environments [ C ]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2007:564-567. 被引量:1
  • 7Bierwirth C, Mattfeld D C. Production scheduling and rescheduling with genetic algorithms [ J ]. Evolutionary Computation, 1999,7 ( 1 ) : 1 - 18. 被引量:1
  • 8Store R, Price K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J].Journal of Global Optimization, 1997,11 (4) : 341 - 359. 被引量:1
  • 9Fan H Y, Lampinen J. A trigonometric mutation operation to differential evolution [J]. Journal of Global Optimization, 2003,27(1 ) : 105 - 129. 被引量:1
  • 10Liu B, Wang L, Jin Y H. An effective PSO-based memetic algorithm for flow shop scheduling [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007,37(1):18-27. 被引量:1

共引文献20

同被引文献27

  • 1张晓菲,张火明.基于连续函数优化的禁忌搜索算法[J].中国计量学院学报,2010,21(3):251-256. 被引量:10
  • 2单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 3胡静,曾建潮,谭瑛.动态环境下基于种群多样性的微粒群算法[J].系统仿真学报,2007,19(21):4932-4935. 被引量:11
  • 4Brest J,Boskovic B,Zumer V.An improved self-adaptive differential evolution algorithm in single objective constrained realparameter optimization[C]//IEEE Congress on Evolutionary Computation.Piscataway,NJ:IEEE Press,2010:1-8. 被引量:1
  • 5Das S,Suganthan PN.Differential evolution:A survey of the state-of-the-art[J].IEEE Transactions on Evolutionary Computation,2011,15(1):4-31. 被引量:1
  • 6Basak A,Das S,Tan KC.Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection[J].IEEE Transactions on Evolutionary Computation,2013,17(5):666-685. 被引量:1
  • 7Brest J,Greiner S,Boskovic B,et al.Self-adapting control parameters in differential evolution:A comparative study on numerical benchmark problems[J].IEEE Transactions on Evolutionary Computation,2006,10(6):646-657. 被引量:1
  • 8Qin A,Huang V,Suganthan P.Differential evolution algorithm with strategy adaptation for global numerical optimization[J].IEEE Transactions on Evolutionary Computation,2009,13(2):398-417. 被引量:1
  • 9Tang K,Yao X,Suganthan PN,et al.Benchmark functions for the CEC,2008special session and competition on large scale global optimization[R].Nature Inspired Computation and Applications Laboratory,USTC,China,2007. 被引量:1
  • 10孟红云,张小华,刘三阳.用于约束多目标优化问题的双群体差分进化算法[J].计算机学报,2008,31(2):228-235. 被引量:68

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部