摘要
为了求解并行协同设计过程中诸多制约关系形成的约束网络,研究动态约束满足问题,提出一种基于模糊物元分析和改进微粒群算法的双层组合启发式求解算法。将模糊物元分析理论作为算法的第一层,建立广义动态约束满足问题的可拓关系元形式化模型,并应用模糊关系元优化方法完成从求解空间到寻优空间的转换;将改进微粒群算法作为第二层,在基本微粒群算法基础上,引入柔性变异概率及动态更新响应方式提高算法对复杂动态系统环境变化的适应性,追踪协同设计进程中动态约束带来的系统极值的最新变化。通过设计实例验证所提算法的有效性。面向广义动态约束网络的双层组合优化算法为协同设计过程中的约束建模和求解提供了一种形式化和动态的研究方法。
In order to resolve the constraints network involving complex coupling relationships in cooperative design process,generalized dynamic constraints satisfaction(GDCS) is studied,and a two-layer combinatorial heuristic algorithm is proposed based on improved particle swarm optimization(PSO) combined with fuzzy matter element analysis(FMEA).The FMEA is used in the first layer to establish the relation-element model of GDCS and transform the multi-objective optimization problems to the single-objective ones;The improved PSO is used in the second layer,on the basis of standard PSO algorithm,the adaptive mutation probability and the response mode of dynamic updating are introduced to improve the adaptability of particles for the dynamic environment,which is intend to make the algorithm to track the latest change of system extremum introduced by dynamic constrains in the process of collaborative design.Finally,a design example verifies the effectiveness of the proposed method.GDCS-oriented combinatorial heuristic algorithm provides a formal and dynamic method to model and solve the constraints network in collaborative product design process.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2011年第3期166-173,共8页
Journal of Mechanical Engineering
关键词
协同设计
广义动态约束满足
模糊物元分析
柔性追踪微粒群算法
Cooperative design Generalized dynamic constraint satisfaction Fuzzy matter-element analysis Flexible tracking particle swarm optimization algorithm