摘要
研究一类含有时滞和Gompertz增长率的捕食-被捕食模型.首先,通过分析特征方程研究非负平衡点的局部稳点性,并得到Hopf分支存在的充分条件;然后,通过构造Lyapunov泛函,运用单调迭代方法,讨论非负平衡点的全局渐近稳定性;最后,对所得理论结果进行数值模拟.
A predator-prey model with time delay and Gompertz growth rate is considered.First, the local stability of each feasible equilibrium is established by analyzing the corresponding characteristic equation,and the existence of the Hopf bifurcation at the positive equilibrium is also obtained.Then,by using Lyapunov functional and the iteration scheme,the global asymptotic stability of each feasible equilibrium is discussed.Finally,numerical simulations are carried out to illustrate the theoretical results.
出处
《军械工程学院学报》
2015年第3期74-78,共5页
Journal of Ordnance Engineering College