期刊文献+

一类具有时滞和Gompertz增长率的捕食模型的稳定性分析

Stability Analysis of a Predator-Prey Model with Time Delay and Gompertz Growth Rate
下载PDF
导出
摘要 研究一类含有时滞和Gompertz增长率的捕食-被捕食模型.首先,通过分析特征方程研究非负平衡点的局部稳点性,并得到Hopf分支存在的充分条件;然后,通过构造Lyapunov泛函,运用单调迭代方法,讨论非负平衡点的全局渐近稳定性;最后,对所得理论结果进行数值模拟. A predator-prey model with time delay and Gompertz growth rate is considered.First, the local stability of each feasible equilibrium is established by analyzing the corresponding characteristic equation,and the existence of the Hopf bifurcation at the positive equilibrium is also obtained.Then,by using Lyapunov functional and the iteration scheme,the global asymptotic stability of each feasible equilibrium is discussed.Finally,numerical simulations are carried out to illustrate the theoretical results.
作者 王志丽 徐瑞
出处 《军械工程学院学报》 2015年第3期74-78,共5页 Journal of Ordnance Engineering College
关键词 时滞 HOPF 分支 Lyapunov 泛函 单调迭代 稳定性 time delay Hopf bifurcation Lyapunov functional iteration scheme stability
  • 相关文献

参考文献8

  • 1马知恩..种群生态学的数学建模与研究[M],1996.
  • 2BERETTA E,KUANG Y.Global analysis in some delayed ratio-dependent predator-prey systems[J].Nonlinear Anal Theory, Method & Appl., 1998,32 (3) : 381-408. 被引量:1
  • 3PIOTROWSKA M J, URSZULA F. The nature of Hopf bifurcation for the Gompertz model with delays [J ]. Mathematical and Computer Modeling, 2011, 54 ( 8 ) :2183-2198. 被引量:1
  • 4JORGENSEN S E, BENDORICCHIO G. Fundamentals of ecological modeling [ M ]. 3th ed. Netherlands: Elsevier, 2001 : 201-207. 被引量:1
  • 5COOKE K, CROSSMAN Z. Discrete delay, distributed delay and stability switches [J]. J. Math. Anal. Appl., 1982,86:592-627. 被引量:1
  • 6KUANG Y.Delay differential equations with applications in population dynamics[M]. New York: Academic Press, 1983:189-195. 被引量:1
  • 7廖晓听.稳定性的理论、方法和应用[M].武汉:华中科技大学出版社,2009:205-214. 被引量:1
  • 8XU Rui, MA Ze.The effect of dispersal on the permanence of a predator-prey system with time delay[J]. Nonlinear Anal.RWA,2008,9(2) :354-369. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部