期刊文献+

结构化场景重建中一种融合直线信息的平面拟合方法 被引量:1

A plane fitting approach using line information to reconstruct structured scenes
原文传递
导出
摘要 结构化场景是三维重建中非常重要的一类场景.本文分析了结构化场景的特点,并针对该类场景下多视立体点云的平面拟合问题,提出了一种融合直线信息的改进PEaRL算法.本文方法首先利用三维直线模型和三维点云模型生成候选平面.直线信息的引入使候选平面的数量得以降低,同时其可靠性得以提升.然后,利用直线对点云的邻接关系进行约束,提高了平面相交处的平面拟合准确性.在能量优化过程中,本文方法对PEaRL算法所使用能量函数的平滑项和标记惩罚项进行了改进,以更好地适应多视立体点云的不规则性.在模拟数据和真实数据集上的对比实验表明,本文方法有较高的运行效率,且可获得比PEaRL等多模型拟合算法更可靠的平面拟合结果. Structured scenes are an important element of 3D reconstruction. Characteristics of structured scenes are analyzed, based on which a modified PEARL algorithm is proposed to perform plane fitting on points pro- vided by multiple view stereo algorithms. In this method, candidate planes are generated from both 3D lines and 3D points. The number of candidate planes is reduced using information provided by the 3D lines further- more, the reliability of the planes is improved. Subsequently, 3D lines are employed to obtain a more reliable neighborhood system, which leads to more accurate plane fitting results at plane intersections. For energy opti- mization, the smoothness term and label cost term are improved to better manage the irregularity of multi-view stereo (MVS) point clouds. Experiments on synthesized and actual data show that the proposed method provides satisfactory time efficiency, and obtains more reliable plane fitting results than other multi-model fitting methods, including PEARL.
出处 《中国科学:信息科学》 CSCD 北大核心 2015年第7期889-902,共14页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61333015,61273280)资助项目
关键词 结构化场景 平面拟合 模型拟合 能量优化 MVS PEARL 三维直线 structured scene, plane fitting, model fitting, energy optimization, MVS, PEARL, 3D lines
  • 相关文献

参考文献20

  • 1Furukawa Y, Ponce J. Accurate, dense, and robust multiview stereopsis. IEEE Trans Pattern Anal Mach Intell, 2010,32: 1362-1376. 被引量:1
  • 2Tola E, Strecha C, Fua P. Efficient large-scale multi-view stereo for ultra high-resolution image sets. Mach Vision Appl, 2012, 23: 903-920. 被引量:1
  • 3Furukawa Y, Curless B, Seitz S M, et al. Manhattan-world stereo. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009. 1422-1429. 被引量:1
  • 4Hong L, Chen G. Segment-based stereo matching using graph cuts. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, 2004. I-74-I-81. 被引量:1
  • 5Zitnick C L, Kang S B. Stereo for image-based rendering using image over-segmentation. Int J Comput Vision, 2007,75: 49-65. 被引量:1
  • 6Wang Z F, Zheng Z G. A region based stereo matching algorithm using cooperative optimization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 2008. 1-8. 被引量:1
  • 7王伟,高伟,胡占义.基于语义约束与Graph Cuts的稠密三维场景重建[J].中国科学:信息科学,2014,44(6):774-792. 被引量:6
  • 8Nguyen A, Le B. 3D point cloud segmentation: a survey. In: Proceedings of IEEE Conference on Robotics, Automation and Mechatronics, Manila, 2013. 225-230. 被引量:1
  • 9Zuliani M, Kenney C S, Manjunath B S. The multiransac algorithm and its application to detect planar homographies. In: Proceedings of IEEE International Conference on Image Processing, Genova, 2005. III-153-6. 被引量:1
  • 10Toldo R, Fusiello A. Image-consistent patches from unstructured points with J-linkage. Image Vision Comput, 2013,31: 756-770. 被引量:1

二级参考文献24

  • 1Snavely N,Seitz S M,Szeliski R.Modeling the world from internet photo collections.Int J Comput Vision,2008,80:189-210. 被引量:1
  • 2Furukawa Y,Ponce J.Accurate,dense,and robust multiview stereopsis.IEEE Trans Patt Anal Mach Intel,2010,32:1362-1376. 被引量:1
  • 3Hong L,Chen G.Segment-based stereo matching using graph cuts.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Washington,2004.I-74-I-81. 被引量:1
  • 4Zitnick C L,Kang S B.Stereo for image-based rendering using image over-segmentation.IEEE Trans Patt Anal Mach Intel,2007,75:49-65. 被引量:1
  • 5Wang Z F,Zheng Z G.A region based stereo matching algorithm using cooperative optimization.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Anchorage,2008.1-8. 被引量:1
  • 6Klaus A,Sormann M,Karner K.Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure.In:Proceedings of IEEE 18th International Conference on Pattern Recognition,Hong Kong,2006.15-18. 被引量:1
  • 7Cigla C,Zabulis X,Aydin Alatan A.Segment-based stereo-matching via plane and angle sweeping.In:Proceedings of 3DTV Conference,Kos Island,2007.1-4. 被引量:1
  • 8Furukawa Y,Curless B,Seitz S M,et al.Manhattan-world stereo.In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Miami,2009.1422-1429. 被引量:1
  • 9Sinha S N,Steedly D,Szeliski R.Piecewise planar stereo for image-based rendering.In:Proceedings of the 12th IEEE International Conference on Computer Vision(ICCV),Kyoto,2009.1881-1888. 被引量:1
  • 10Micusík B,Kosecká J.Multi-view superpixel stereo in urban environments.Int J Comput Vision,2010,89:106-119. 被引量:1

共引文献5

同被引文献9

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部