期刊文献+

一种结合低秩与稀疏惩罚的PET动态图像重建方法 被引量:4

Reconstruction of dynamic positron emission tomographic images by exploiting low rank and sparse penalty
下载PDF
导出
摘要 目的提出一种结合低秩与稀疏惩罚的PET动态图像重建方法(L&S)。方法建立L&S重建模型,利用split Bregman法来最优化求解代价函数。采用单房室模型仿真一套PET心肌82Rb灌注图像,将L&S重建方法与最大似然期望值法(MLEM)、低秩惩罚和稀疏惩罚重建方法比较。结果 L&S方法重建的图像的均方误差(MSE)最小,并且保留了更多图像特征。另外L&S重建得到的靶心图和参考组的靶心图最相近。结论 L&S重建方法无论是在直观视觉上,还是定量分析上都优于另外3种方法。 Objective To propose a new method for dynamic positron emission tomographic(PET) image reconstruction using low rank and sparse penalty(LS). Methods The LS reconstruction model was established and the split Bregman method was used to solve the optimal cost function. The one-tissue compartment model was used to simulate a set of PET 82 Rb myocardial perfusion image. The LS reconstruction method was compared with maximum likelihood expectation maximization(MLEM) method, low-rank penalty method and sparse penalty method. Results The LS reconstruction method had the smallest MSE and well maintained the feature information. The polar map created by LS method was the most similar with the reference actual polar map. Conclusion LS reconstruction method is better than the other three methods in both visual and quantitative analysis of the PET images.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2015年第10期1446-1450,共5页 Journal of Southern Medical University
基金 国家自然科学基金(81501541) 广东省自然科学基金(2014A030310243) 教育部高等学校博士学科专项科研基金(20134433120017) 广东省医学科研基金(B2014240)~~
关键词 低秩 稀疏 重建 心肌灌注 low rank sparse reconstruction myocardial perfusion
  • 相关文献

参考文献23

  • 1Sampson UK, Dorbala S, Limaye A, et al. Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease[ J ]. J Am Coil Cardiol, 2007, 49(10): 1052-8. 被引量:1
  • 2Bateman TM. Heller GV, Mcghie AI, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT[J]. J Nucl Cardiol, 2006, I3(1): 24-33. 被引量:1
  • 3Coxson PG, Huesman RH, Borland L. Consequences of using a simplified kinetic model for dynamic PET data[J]. J Nucl Med, 1997, 38(4): 660-7. 被引量:1
  • 4El Fakhri G, Sitek A, Gudrin B, et al. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartmenl analyses[J]. J Nucl Med, 2005, 46(8): 1264-71. 被引量:1
  • 5Mumcuo~lu EU, Leahy RM, Cherry SR. Bayesian Reconstruction of PET images: methodology and perfonnance analysis [J]. Phys Med Biol, 1996, 41(9): 1777-807. 被引量:1
  • 6Reader A J, Zaidi H. Advances in PET image Reconstruction [J]. PET Clin, 2007, 2(2): 173-90. 被引量:1
  • 7Shidahara M, Ikoma Y, Kershaw J, et al. PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging[J]. Arm Nucl Med, 2007, 21(7): 379-86. 被引量:1
  • 8Wang CY, Hu ZH, Shi PC, et al. Low dose PET Reconstruction with total variation regularization [C]//2014 36TH Annual international conference of the ieee engineering in medicine and biology society (EMBC), 2014: 1917-20. 被引量:1
  • 9Mehranian A, Rahmim A, Ay MR, et al. An ordered-subsets proximal preconditioned gradient algorithm for total variation regularized PET image Reconstruction [C]//Nuclear Science Symposium and Medical Imaging Conference, 2012: 3375-82. 被引量:1
  • 10Burger M, Mueller J, Papoutsellis E, et al. Total variation regularization in measurement and image space for PET Reconstruction[J]. Inverse Probl, 2014, 30(10): 105003. 被引量:1

同被引文献35

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部