摘要
利用复分析的值分布理论研究了亚纯函数的唯一性,给出了下面的结果.设q(z)为k次有理函数,f(z)和g(z)是两个超越亚纯函数,fg与q没有共同的极点.n是正整数且n≥max{11,k+1}.如果f^n(z)f′(z),g^n(z)g′(z)分担有理函数q(z)CM,则f(z)=c_1e^(c∫q(z)dz),g(z)=c_2e^(-c∫q(z)dz),这里c_1,c_2和c是三个常数且满足(c_1c_2)^(n+1)c^2=-1;或者f(z)≡tg(z),其中t是一个常数满足t^(n+1)=1.
We use the theory of value distribution and study the uniqueness of meromorphic functions.We will prove the following result:Let q(z) be a rational function of degree k,f(z) and g(z) be two transcendental meromorphic functions,and let q have no same poles as fg,n be a positive integer and n max{11,k+1}.If f^n(z)f'(z)and g^n(z)g'(z) share q(z) CM,then either f(z) = c1e^(c∫q(z)dz),g(z) = c2e^(-c∫q(z)dz),where c1,c2 and c are three constants satisfying(c1c2)^(n+1)c^2 =-1,or f(z) = tg(z) for a constant t such that t^(n+1) = 1.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2015年第4期685-690,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11371149)
关键词
亚纯函数
有理函数
零点
极点
meromorphic function rational function zero point pole point