期刊文献+

基于时间反转法的相控换能器声场的仿真研究 被引量:4

The simulation study of acoustic pressure field about HIFU phased array transducer based on time reversal method
下载PDF
导出
摘要 相控换能器具有焦距可调的优势。本文以82阵元相控换能器建立的3D数值仿真模型为例,基于时间反转法提取阵元的激励信号,利用时域有限差分(FDTD)法对Westervelt声波非线性传播方程进行声场数值仿真,研究不同阵元分布、焦点偏离声轴的距离、设定焦距大小对形成声场的影响,可调控范围及其消除旁瓣方法。研究结果表明,随机分布相控阵可明显降低声场中的旁瓣;随着偏离声轴距离的增加,主瓣声压幅值逐渐减小,旁瓣与主瓣的最大声强比值r逐渐增大,且沿声轴的可调控范围逐渐减小;随声轴方向上设定焦距的增加,主瓣声压幅值先增大后减小,r值先减小后增大;基于时间反转法的高声压旁瓣消除法可在一定程度上扩大相控阵声场的可调控范围。 Phased array transducer has the advantage of adjustable focal length. In this paper, the incentive signal of each element is abstracted by time reversal method and the acoustic pressure numerical simulation is undergone through finite difference time domain (FDTD) of Westervelt acoustic nonlinear transmission formula based on the 3D numerical simulation model of 82-element phased array transducer. The effect of different element distribution, the distance off the acoustic axis and the setting focal length on the forming acoustic pressure field is discussed. The adjustable range of acoustic pressure field and the method which eliminate sidelobe is also analyzed. The results show that the phased array transducer with quasi-random distribution can suppress the sidelobe significantly. As the distance off the acoustic axis increasing, the acoustic pressure amplitude of the main lobe decreases, the acoustic intensity ratio between the maximum sidelobe and the main lobe (r value) increases, and the adjustable range along the acoustic axis decreases. The acoustic pressure amplitude of the main lobe increases firstly and then decreases, while r value decreases firstly and then increases with the increase of setting focal length along the acoustic axis. To some extent, the acoustic adjustable range can be extended by the high acoustic pressure sidelobe elimination method based on time reversal method.
出处 《应用声学》 CSCD 北大核心 2015年第4期344-350,共7页 Journal of Applied Acoustics
基金 国家自然科学基金项目(81272495)
关键词 高强度聚焦超声 相控换能器 阵元分布 时间反转法 高声压旁瓣消除法 High-intensity focused ultrasound, Phased array transducer, Element distribution, Time reversal method, High acoustic pressure sidelobe elimination method
  • 相关文献

参考文献17

  • 1KENNEDY J E. High-intensity focused ultrasound in the treatment of solid tumours[J]. Nature Reviews Cancer, 2005, 5(4): 321-327. 被引量:1
  • 2GOSS S A, FRIZZELL L A, KOUZMANOFF J T, et al. Sparse random ultrasound phased array for focal surgery[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1996, 43(6): 1111-1121. 被引量:1
  • 3LU Mingzhu, WAN Mingxi, XU Feng, et al. Focused beam control for ultrasound surgery with spherical-section phased array: sound field calculation and genetic opti- mization algorithm[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52(8): 1270-1290. 被引量:1
  • 4HAND J W, SHAW A, SADHOO N, et al. A random phased array device for delivery of high intensity focused ultrasound[J]. Phys. Med. Biol., 2009, 54(19): 5675-5693. 被引量:1
  • 5JI Xiang, SHEN Guofeng, BAI Jingfeng, et al. The char- acterization of an ultrasound spherical phased array for the ablation of deep-seated tissue[J]. Appl. Acoust., 2012, 73(5): 529-534. 被引量:1
  • 6GAVRILOV L R, HAND J W. A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2000, 47(1): 125-139. 被引量:1
  • 7HAMILTON M F, BLOCKSTOCK D T. Nonlinear Acoustics[M]. Boston: Academic Press, 1998. 被引量:1
  • 8BAILEY M, KHOKHLOVA V, SAPOZHNIKOV O, et al. Physical mechanism of the therapeutic effect of ultrasound (A review)[J]. Acoustic Physics, 2003, 49(4): 369-388. 被引量:1
  • 9YEE K S. Numerical solution of initial boundary value problems involving Maxwell's equations[J]. IEEE Trans. Antennas Propag, 1966, 14(3): 302-307. 被引量:1
  • 10RADZEVICIUS S J, CHEN C C, ETERS J L, et al. Near- field dipole radiation dynamics through FDTD model- ing[J]. Journal of Applied Geophysics, 2003, 52(2): 75-91. 被引量:1

二级参考文献1

  • 1营喜岐,孙武军.凹球面八圆环相控阵高强度聚焦换能器[P].中国.CN201020682474.6.2011-9-14:. 被引量:1

共引文献2

同被引文献12

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部