期刊文献+

基于支持向量机改进算法的船舶类型识别研究 被引量:11

Application of an improved support vector machine classification algorithm to underwater targets recognition
下载PDF
导出
摘要 利用船舶目标辐射噪声DEMON谱特征,采用改进的支持向量机算法,实现了对船舶目标的分类识别研究。针对支持向量机算法对噪声比较敏感和最优分类面求解时约束较多不利于支持向量机最优分类面寻优的问题,在保持支持向量稀疏性和应用径向基核函数的条件下,对支持向量机算法在松弛变量和决策函数两方面进行了改进,提出了基于径向基核函数的齐次决策二阶损失函数支持向量机改进算法,并应用于利用船舶目标辐射噪声DEMON谱进行船舶目标类型分类识别实验。理论分析、数据仿真与实验结果表明,该改进算法实现了在二次规划中的较少约束条件下最优分类面求解,具有模型参数寻优空间广阔、总体分类性能优的特点,其分类性能优于原支持向量机算法,是一种适合于船舶辐射噪声DENOM分类识别的有效的支持向量机改进算法。 The underwater targets recognition based on DEMON spectra has been realized with a proposed improved support vector machine algorithm. To solve the problem that the support vector machine(SVM) is sensitive to noise and that there are so many restrictions against looking for optimal hyper-plane in solving the optimal hyper-plane, an improvement is done in the relaxation and decision function. The SVM algorithm of homogeneous decision- second order loss function based on RBF(Radial Basis Function) is given, and the solution of optimal hyper-plane under quadratic programming problem is realized. Recognition experiments have been done by using simulation datasets and four kinds DEMON datasets of ship radiated noise. The results show that this algorithm has the characters in large optimized space of model parameters and good overall recognition performance, which is suitable for ship radiated noise recognition.
出处 《声学技术》 CSCD 北大核心 2015年第3期203-208,共6页 Technical Acoustics
关键词 船舶目标分类 支持向量机 齐次决策二阶损失函数 ship target classification Support Vector Machine(SVM) homogeneous decision-second order loss function
  • 相关文献

参考文献13

  • 1戴卫国,程玉胜,王易川.支持向量机对舰船噪声DEMON谱的分类识别[J].应用声学,2010,29(3):206-211. 被引量:10
  • 2瓦普尼克(VladimirN.Vapnik).统计学习理论的本质[M].张学工译.北京:清华大学出版社,2000. 被引量:1
  • 3焦李成著..智能目标识别与分类[M].北京:科学出版社,2010:551.
  • 4David Casasent, Yu-Chiang Wang. A hierarchical classifier using new support vector machines for automatic target recognition[J]. Neural Networks, 2005, 18: 541-548. 被引量:1
  • 5Martinez-Ramon M, Rojo-Alvarez J L, Camps-Vails G. Support vector machines for nonlinear kernel ARMA system identifica- tion[J]. Neural Networks, 2006, 17(6): 1617-1622. 被引量:1
  • 6邓乃杨,田英杰.数据挖掘中的新方法…支持向量机[M].北京:科学出版社,2004. 被引量:1
  • 7张春华..支持向量机中最优化问题的研究[D].中国农业大学,2004:
  • 8陈宝林编著..最优化理论与算法 第2版[M].北京:清华大学出版社,2005:468.
  • 9李明著..详解MATLAB在最优化计算中的应用[M].北京:电子工业出版社,2011:452.
  • 10赵春晖,陈万海,郭春燕.多类支持向量机方法的研究现状与分析[J].智能系统学报,2007,2(2):11-17. 被引量:26

二级参考文献43

  • 1董春曦,杨绍全,饶鲜,汤建龙.支持向量机推广能力估计方法比较[J].电路与系统学报,2004,9(4):86-91. 被引量:11
  • 2程玉胜,王易川,史广智,惠俊英.基于现代信号处理技术的舰船噪声信号DEMON分析[J].声学技术,2006,25(1):71-74. 被引量:21
  • 3燕孝飞,葛洪伟,颜七笙.RBF核SVM及其应用研究[J].计算机工程与设计,2006,27(11):1996-1997. 被引量:16
  • 4[1]HSU C W,LIN C J.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425. 被引量:1
  • 5[2]KIJSIRKUL B,USSIVAKUL N.Multiclass support vector machines using adaptive directed acyclic graph[A].Proceedings of the 2002 International Joint Conference on Neural Networks[C].Honolulu,HI,USA,2002,1(5):980-985. 被引量:1
  • 6[3]PHETKAEW T,KIJSIRIKUL B,RIVEPIBOON W.Reordering adaptive directed acyclic graphs:an improved algorithm for multiclass support vector machines[A].Proceedings of the 2003 International Joint Conference on Neural Networks[C].Portland,OR,USA,2003. 被引量:1
  • 7[4]TIAN X,DENG F Q.An improved multi-class SVM algorithm and its application to the credit scoring model[A].Proceedings of the fifth World Congress on Intelligent Control and Automation[C].Hangzhou,China,2004. 被引量:1
  • 8[5]ANGUITA D,RIDELLA S,STERPI D.A new method for multiclass support vector machines[A].Proceedings of the 2004 International Joint Conference on Neural Networks[C].Budapest,Hungary,2004. 被引量:1
  • 9[8]TAKAHASHI F.Decision-tree-based multi-class support vector machines[A].Proceedings of the 9th International Conference on Neural Information Processing[C].Orchid Country Club,Singapore,2002. 被引量:1
  • 10[9]PLATT J,CRISTIANINI N,SHAWE-TAYLOR J.Large margin DAGs for multiclass classification[A].Proceedings of Neural Information Processing Systems[C].[s.l.],Cambridge,2000. 被引量:1

共引文献62

同被引文献71

引证文献11

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部