期刊文献+

竖炉焙烧过程的智能设定模型

Intelligent setting model for shaft furnace roasting process
下载PDF
导出
摘要 为了改善多目标评价案例推理设定模型在竖炉焙烧过程控制中的性能,运用注水原理分配过程变量的权重和群决策修正方法对多目标评价案例推理设定方法进行改进,得到一种新的智能设定模型.首先引入注水原理构造Lagrange函数对过程变量的权重进行优化分配,再通过案例检索和案例重用得到设定值的建议解,并根据多目标评价模型预测建议解对生产指标的影响效果,最后,对不合理的设定值进行群决策修正.将得到的设定模型应用于竖炉焙烧过程控制中,通过实验测试和对比应用说明了本文方法优于其他方法,能够有效提高多目标评价案例推理设定模型的控制性能. To improve the control performance of the setting model with multi-objective evaluation and case-based reasoning (MOE & CBR) for shaft furnace roasting process, we make use of the water-filling based weight allocation (WFA) to allocate weights for process variables and employ the group decision-marking revision (GDMR) to develop a new intelligent setting method. First, a Lagrange function is constructed to optimize the allocation of the weights of the process variables via WFA. Subsequently, the suggested solutions of set-points are obtained through case retrieval and case reuse. These suggested solutions are used to evaluate the production performance indices based on the multi-objective evaluation (MOE) model. Those unreasonable set-points from MOE model are revised by GDMR. The proposed method has been applied to the shaft furnace roasting process. The application results indicate that the proposed method is superior to other methods and it can significantly improve the control performance of MOE & CBR model.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2015年第5期709-715,共7页 Control Theory & Applications
基金 国家自然科学基金项目(61374143) 北京市自然科学基金项目(4152010)资助~~
关键词 竖炉 智能设定 多目标评价 案例推理 群决策 shaft furnace intelligent setting multi-objective evaluation (MOE) case-based reasoning (CBR) group decision-making (GDM)
  • 相关文献

参考文献15

  • 1严爱军,柴天佑,王普.基于参量预报的磁选管回收率智能优化控制[J].控制理论与应用,2008,25(5):908-912. 被引量:4
  • 2YAN A, CHAI T, YU W, et al. Multi-objective evaluation-based hy- brid intelligent control optimization for shaft furnace roasting pro- cess [J]. Control Engineering Practice, 2012, 20(9): 857 - 868. 被引量:1
  • 3CHAI T, WU F, DING J, et al. Intelligent work-situation fault diagno- sis and fault-tolerant system for the shaft-furnace roasting process [J]. Proceedings of the Institution of Mechanical Engineers, Part L" Jour- nal of Systems and Control Engineering, 2007, 221(6): 843 - 855. 被引量:1
  • 4CHAI T, DING J, WU F. Hybrid intelligent control for optimal oper- ation of shaft furnace roasting process [J]. Control Engineering Prac- tice, 2011, 19 (3): 264 - 275. 被引量:1
  • 5CHAI T, ZHAO L, QIU J, et al. Integrated network-based model pre- dictive control for setpoints compensation in industrial processes [J]. IEEE Transactions on Industrial lnformatics, 2013, 9(1): 417 - 426. 被引量:1
  • 6DIRKSZ D A, SCHERPEN J M A. Power-based setpoint control: ex- perimental results on a planar manipulator [J]. IEEE Transactions on Control Systems Technology, 2012, 20(5): 1384 - 1391. 被引量:1
  • 7HERNANDEZ-DEL-OLMO F, GAUDIOSO E, NEVADO A. Au- tonomous adaptive and active tuning up of the dissolved oxygen setpoint in a wastewater treatment plant using reinforcement learn- ing [J]. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 2012, 42(5): 768 - 774. 被引量:1
  • 8GUERRERO J, GUISASOLA A, VILANOVA R, el al. Improving the performance of a WWTP control system by model-based setpoint op-timization [J]. Environmental Modelling and Software, 2011, 26(4): 492 - 497. 被引量:1
  • 9罗小川.钢水到达时间扰动下连铸机二冷过程设定值的优化方法[J].控制理论与应用,2012,29(10):1291-1300. 被引量:1
  • 10乔景慧,周晓杰,柴天佑.水泥生料预分解过程智能优化设定控制[J].控制理论与应用,2011,28(11):1534-1540. 被引量:2

二级参考文献33

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部