期刊文献+

缺失PHO13基因与进化工程构建高效利用木糖酵母

Construction of An Efficient Xylose-Utilizing Saccharomyces cerevisiae Strain by Deletion of PHO13 Gene and Evolutionary Engineering
原文传递
导出
摘要 过表达了木糖还原酶、木糖醇脱氢酶和木酮糖激酶基因的重组工业酿酒酵母菌株KAM-6X内缺失了编码对硝基苯磷酸盐磷酸化酶的PHO13基因,接着通过EMS诱变和进化工程筛选,获得了一株高效利用木糖的菌株,命名为PE。有氧条件下,在含50 g/L木糖和100 g/L木糖的YPX中最大比生长速率分别为0.299和0.282 h-1,分别比出发菌提高了95.43%和102.87%,同时PE菌株能在前24 h内耗掉36.12 g/L木糖,48 h内耗掉70.25 g/L木糖。微好氧条件下副产物产量降低,糖醇转化率最高达到0.382 g/g,证明PE是一株高效利用木糖发酵的工业酵母菌株。 Xylose is the second most abundant sugar and the most prevalent pentose sugar found in lignocelluloses. To improve xylose utilization,significant efforts have focused on the metabolic engineering of Saccharomyces cerevisiae. In this study,efficient xylose-utilizing Saccharomyces cerevisiae strain PE,was constructed by deletion of PHO13 gene encoding para-nitrophenyl phosphatase and subjected to EMS mutagenesis followed by evolution engineering in an industrial recombinant strain,KAM-6X,which over expressed the genes encoding xylose reductase,xylitol dehydrogenase and xylulokinase. Under aerobic condition,the specific growth rate of PE was 0. 299 h- 1and 0. 282 h- 1in YPX containing 50 g / L and100 g / L xylose,which improved about 95. 43% and 102. 87%,respectively. And PE strain can consume 36. 12 g / L xylose in 24 h and 70. 25 g / L xylose in 48 h. Under oxygen-limited condition,ethanol yield reached 0. 382 g / g with less glycerol production and high acetate level. It proves that PE is an efficient xlose-fermenting industrial yeast strain.
出处 《化学工业与工程》 CAS CSCD 2015年第4期73-78,共6页 Chemical Industry and Engineering
关键词 木糖 PHO13 进化工程 酿酒酵母 乙醇 xylose PHO13 evolutionary engineering Saccharomyces cerevisiae ethanol
  • 相关文献

参考文献17

  • 1Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489. 被引量:1
  • 2Stephanopoulos G. Challenges in engineering microbes for biofuels production[J]. Science, 2007, 315(5 813): 801-804. 被引量:1
  • 3刘健,陈洪章,李佐虎.木糖发酵生产乙醇的研究[J].工业微生物,2001,31(2):36-37. 被引量:35
  • 4Hahn-H?gerdal B, Karhumaa K, Fonseca C, et al. Towards industrial pentose-fermenting yeast strains[J]. Applied Microbiology and Biotechnology, 2007, 74(5): 937-953. 被引量:1
  • 5Matsushika A, Inoue H, Kodaki T, et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives[J]. Applied Microbiology and Biotechnology, 2009, 84(1): 37-53. 被引量:1
  • 6Van Vleet J H, Jeffries T W. Yeast metabolic engineering for hemicellulosic ethanol production[J]. Current Opinion in Biotechnology, 2009, 20(3): 300-306. 被引量:1
  • 7Eliasson A, Christensson C, Wahlbom C F, et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae Carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures[J]. Applied and Environmental Microbiology, 2000, 66(8): 3 381-3 386. 被引量:1
  • 8Van Vleet J H, Jeffries T W, Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose[J]. Metabolic Engineering, 2008, 10(6): 360-369. 被引量:1
  • 9Fujitomi K, Sanda T, Hasunuma T, et al. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural[J]. Bioresource Technology, 2012, 111: 161-166. 被引量:1
  • 10Liu E, Hu Y. Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation[J]. Biochemical Engineering Journal, 2010, 48(2): 204-210. 被引量:1

二级参考文献3

  • 1吴东儒.糖的生物化学[M].北京:高等教育出版社,1990.156. 被引量:1
  • 2吴东儒,糖的生物化学,1990年,156页 被引量:1
  • 3Chen L F,J Food Sci,1985年,50卷,226页 被引量:1

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部