期刊文献+

切削式吸能的惯性效应 被引量:6

Inertia effects of cutting energy absorption
原文传递
导出
摘要 在考虑切削热影响的基础上,采用数值模拟研究了切削式吸能过程的惯性效应,计算了不同初始撞击条件下的稳定切削力、切削位移、最高温度、热耗散能量和热耗散能量比例。计算结果表明:初始撞击能量为20kJ时,切屑生成时切削力未出现明显的初始峰值,稳定切削力变化范围为63.0~63.8kN,变化规律相同,变化趋势一致;撞击质量为200kg,撞击速度变化范围为3~10m·S-1时,稳定切削力变化范围为63.0~64.4kN;撞击速度为10m·S-1,撞击质量由0.4t增加至3.2t时,热耗散能量由4.12kJ增加到36.64kJ,热耗散能量随撞击质量的增大而增大,最高温度变化范围为586℃~602℃,热耗散能量比例变化范围为20.6%~23.2%,稳定切削力的变化范围为63.0~64.1kN。可见,在切削深度和刀具几何参数不变的条件下,初始撞击能量、撞击质量和撞击速度对切削力影响很小,切削式吸能过程的惯性敏感性弱,切削式吸能结构属于第工类,而且,切削热占能量耗散比例大,撞击速度对其影响程度大。 ℃Based on considering the influence of cutting heat, the inertia effects of cutting energy absorption were studied by numerical simulation, and stable cutting force, cutting displacement, maximum temperature, heat dissipative energy and the dissipative proportion of thermal energy were computed under different initial impact conditions. Computation result shows when the initial impact energy is 20 kJ and there are no distinct initial cutting force peaks in chip formation, the stable cutting force ranges from 63.0 kN to 63.8 kN, and the changing rules and trends of cutting force curves are approximately same. When the impact mass is 200 kg and the impact velocity changes from 3 m · s-1 to 10 m · s-1 , the stable cutting force ranges from 63.0 kN to 64.4 kN. When the impact velocity is 10 m · s-1 and the impact mass changes from 0. 4 t to 3.2 t, the heat dissipative energy increases from 4.12 kJ to a6.64 kJ, the maximum temperature changes between 586 ℃ and 602 ℃, the dissipative proportion of thermal energy ranges from 20.6 % to23.2%, and the stable force ranges from 63.0 kN to 64. 1 kN. Obviously, when the cutting depth and the geometrical parameters of cutting tool are defined, the initial impact energy, impact mass and impact velocity have little effect on the cutting force, the inertia effects of cutting energy-absorbing process are insensitive, and the cutting energy-absorbing structure belongs to type I. The cutting heat accounts for a large proportion of energy dissipation and is greatly influenced by the initial impact velocity. 4 tabs, 21 figs, 27 refs.
出处 《交通运输工程学报》 EI CSCD 北大核心 2015年第3期62-70,共9页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(51275532 U1334208)
关键词 车辆工程 吸能结构 切削式吸能过程 惯性效应 有限元法 热力学 vehicle engineering energy-absorbing structure cutting energy-absorbing process inertia effects finite element method thermodynamics
  • 相关文献

参考文献27

  • 1王庆艳..铝型材地铁车车体耐撞性分析及吸能结构最优设计[D].大连交通大学,2007:
  • 2WlERZBICKI T. Crushing analysis of metal honeycombs[J]. International Journal of Impact Engineering, 1983, 1 (2) : 157-174. 被引量:1
  • 3伞军民..列车吸能结构碰撞仿真与分析[D].大连交通大学,2009:
  • 4罗圩琪.B型地铁车辆间鼓胀与诱导组合式吸能结构碰撞性能研究[D].长沙:中南大学,2011,. 被引量:1
  • 5CALLADINE C R, ENGLISH R W. Strain-rate and inertia effects in the collapse of two types of energy-absorbing struc- ture[J]. International Journal of Mechanical Sciences, 1984, 26(11/12): 689-701. 被引量:1
  • 6卢文浩,鲍荣浩.动态冲击下能量吸收结构的惯性敏感性的数值模拟分析[J].振动与冲击,2004,23(3):67-69. 被引量:4
  • 7EJI U, KATSUHIRO M, TAKAHIRO S. Simulation analysis of built-up edge formation in machining of low carbon steel[J]. Bulletin of the Japan Society Precision Engineering, 1981, 15(4) : 237-242. 被引量:1
  • 8STRENKOWASKI J S, CARROLL J T. A finite element model of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1985, 107(4); 349-354. 被引量:1
  • 9STRENKOWASKI J S, MOON K J. Finite element prediction of chip geometry and tool/workpiece temperature distribution in orthogonal metal cutting[J]. Journal of Manufacturing Science and Engineering, 1990, 112(3): 313-318. 被引量:1
  • 10SHIH A J. Finite element simulation of orthogonal metal cutting[J]. Journal of Engineering for Industry, 1995, 117(2) : 84-93. 被引量:1

二级参考文献53

共引文献50

同被引文献26

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部