期刊文献+

基于协同熵的K-均值算法

K-Means Algorithm Based on Co-entropy
下载PDF
导出
摘要 针对传统K-均值算法容易受到野点和噪声点的影响,缺乏鲁棒性的问题,提出了一种基于协同熵的K-均值算法。该方法利用协同熵作为一种局部的相似度度量手段,并依赖最大协同熵准则进行最优聚类中心的求解。采用迭代重加权的优化算法可以用来快速实现最优聚类中心的求解。对于残差较大的野点和噪声,它们在聚类中心更新的过程中将被赋予较小的权重。实验结果表明,基于协同熵的K-均值算法具有较好的鲁棒性,并获得较好的聚类效果。 Considering the fact that conventional K-means algorithm is susceptible to the outliers and noise points,and lacking in robustness,a new K-means algorithm based on co-entropy is proposed. The proposed algorithm employs co-entropy as a means of local similarity measurement,and follows the co-entropy maximization principle to solve the optimal cluster centers. An iteratively reweighted optimization technique is employed to quickly find the optimal cluster centers. For outliers and noisy data points with larger residuals,they will be assigned smaller weights in updating the cluster centers. Experimental results demonstrate that the proposed co-entropy based K-means algorithm is robust,winning a better clustering effect.
出处 《电光与控制》 北大核心 2015年第7期66-69,共4页 Electronics Optics & Control
关键词 K-均值算法 协同熵 聚类 K-means algorithm co-entropy cluster
  • 相关文献

参考文献13

  • 1XU C, TAO D C, XU C. Large-margin multi-viewinforma- tion bottleneck[ J]. IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2014, 36 ( 8 ) : 1559-1572. 被引量:1
  • 2XU C, TAO D C, XU C, et al. Large-margin Weakly super- vised dimensionality reduction[ C]//Proceedings of the 31st International Conference on Machine Learning, Beijing, 2014:865-873. 被引量:1
  • 3XU C, TAO D C, LI Y X, et al. Large-margin multi-viewGaussian process for image classification [ C ]//Proceed- ings of the 15th International Conference on Internet Mul- timedia Computing and Service, ACM, 2013:7-12. 被引量:1
  • 4XU C, TAO D C, XU C. A survey on multi-view learning [ EB/OL ]. [ 2015-04-10 1. http ://arxiv. org/abs/1304. 5634. 被引量:1
  • 5PETORS D, ALAN M F, RAVI K, et al. Clu.stering large graphs via the singular value decomposition [ J ]. Machine Learning, 2004, 56( 1 ) :9-33. 被引量:1
  • 6TAO D P, LIANG L Y, JIN L W, et al. Similar handwritten Chinese character recognition by kernel discriminative lo- cality alignment [ J 1. Pattern Recognition Letters, 2014, 35 (1) :186-194. 被引量:1
  • 7TAO D P, JIN L W, WANG Y F, et al. Rank preserving discriminant analysis for human behavior recognition on wireless sensor networks [ J ]. IEEE Transactions on In- dustrial Informatics, 2014, 10( 1 ) :813-823. 被引量:1
  • 8TAO D P, JIN L W, YANG Z, et al. Rank preserving sparse learning for kinect based scene classification [ J ]. IEEE Transactions on Cybernetics, 2013, 43 (5) : 1406-1417. 被引量:1
  • 9桂云苗,朱金福.一种用信息熵确定聚类权重的方法[J].统计与决策,2005,21(08X):29-30. 被引量:12
  • 10周漩,张凤鸣,惠晓滨,李克武.基于信息熵的专家聚类赋权方法[J].控制与决策,2011,26(1):153-156. 被引量:29

二级参考文献19

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部