期刊文献+

基于非对称变邻域粗糙集模型的属性约简 被引量:3

Attribute Reduction Based on Asymmetric Variable Neighborhood Rough Set
下载PDF
导出
摘要 在分析邻域粗糙集模型弊端的基础上,提出了非对称变邻域粗糙集模型,并以全局属性重要度为启发条件,构造了基于非对称变邻域粗糙集模型的属性约简的启发式算法。利用6个UCI标准数据集与现有算法进行了比较分析,结果表明,该模型不仅可以选择较少的属性个数,而且还能保持较高的分类能力。 On the basis of analyzing the disadvantage of neighborhood rough set model, we proposed an asymmetric vari- able neighborhood rough set model and a new heuristic attribute reduction algorithm based on asymmetric variable neighborhood rough set. The heuristic condition is global attribute significance. Experimental results show that the number of attribute reduction and classification accuracy based on asymmetric variable neighborhood rough set model have better performance.
出处 《计算机科学》 CSCD 北大核心 2015年第6期282-287,共6页 Computer Science
基金 国家自然科学基金资助项目(61070049 61202027) 国际科技合作项目(2012D FA11340) 北京市自然科学基金资助项目(4122015) 电子系统可靠性技术北京市重点实验室2012年阶梯计划项目(Z121101002812006)资助
关键词 邻域粗糙集 全局定邻域 非对称变邻域 全局属性重要度 Neighborhood rough set Global neighborhood Asymmetric variable neighborhood Global attribute significance
  • 相关文献

参考文献19

  • 1Pawlak Z. Rough sets[J]. International Journal of Computer and Information Science, 1982,11 : 341-356. 被引量:1
  • 2赵军,王国胤,吴中福,唐宏,李华.基于粗集理论的数据离散化方法[J].小型微型计算机系统,2004,25(1):60-64. 被引量:34
  • 3谢宏,程浩忠,牛东晓.基于信息熵的粗糙集连续属性离散化算法[J].计算机学报,2005,28(9):1570-1574. 被引量:134
  • 4陈果.基于遗传算法的决策表连续属性离散化方法[J].仪器仪表学报,2007,28(9):1700-1705. 被引量:9
  • 5Jensen R, Shen Q. Semantics-Preserving dimensionality reduc- tiom Rough and fuzzy-rough-based approaches[J]. IEEE Trans. on Knowledge and Data Engineering,2004,16(12):1457-1471. 被引量:1
  • 6Wong Tzu-Tsung. A hybrid discretization method for naive Bayesian classifiers [J]. Pattern Recognition, 2012,45 (6) : 2321- 2325. 被引量:1
  • 7Augasta M G,Kathirvalavakumar T. A new discretization algo- rithm based on range coefficient of dispersion and skewness for neural networks classifier [J]. Applied Soft Computing, 2012,12 (2) :619-625. 被引量:1
  • 8Li Min, Deng Shao-bo, Feng Sheng-zhong, et al. An effective discretization based on Class-Attribute Coherence Maximization [J]. Pattern Recognition Letters, 2011,32 (15) : 1962-1973. 被引量:1
  • 9Ferreira A J, Figueiredo M A T. An unsupervised approach tofeature discretization and selection [J]. Pattern Recognition, 2012,45 (9) : 3048-3060. 被引量:1
  • 10Lin T, Granular Y. Computing on binary relations I:Data mining and neighborhood systems[C]//Skoworn A, Polkowshi L, eds. Proc. of the Rough Sets in Knowledge Discovery. Physiea-Ver- lag, 1998 : 107-121. 被引量:1

二级参考文献75

共引文献473

同被引文献16

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部