期刊文献+

基因数据集混合特征选择算法研究 被引量:1

Research on Hybrid Feature Selection Algorithm for Gene Data Sets
下载PDF
导出
摘要 基因数据的特点是高维度、小样本、大噪声,在处理过程中容易造成维数灾难和过度拟合等问题。针对这种情况提出一种新的基因数据集的特征选择方法,第一步是通过ReliefF算法对基因特征进行权重重要度的筛选;第二步是对筛选过的特征集合进行mRMR算法判断,留下与目标类别高度相关而其间相关性较小的基因特征;第三步利用邻域粗糙集特征选择算法对简化后的基因数据集进行寻优处理,选出最优化的特征基因子集。为了证明新算法的有效性,以SVM为分类器,使用外部交叉验证法对整个过程来计算,从而验证本文新特征选择方法的有效性。 The characteristics of genetic data are high dimension,small sample and large noise,which are easy to cause dimensional disaster and over-fitting in the process of processing.In order to solve this problem,a novel feature selection method for gene data sets is proposed.The first step is to use ReliefF algorithm to screen the weight importance of the gene features.The second step is to use mRMR algorithm to judge the selected feature set,leaving the gene features highly correlated with the target category and less correlated.The third step is to use neighborhood rough set feature selection algorithm to optimize the simplified gene data set,selecting optimal subset of feature genes.To prove the effectiveness of the new algorithm,SVM is used as the classifier and the external cross-validation method is used to calculate the whole process to verify the effectiveness of the new feature selection method.
作者 马国娟 吴辰文 刘文祎 MA Guo-juan;WU Chen-wen;LIU Wen-yi(School of Electronics and Information,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《测控技术》 2019年第10期71-75,共5页 Measurement & Control Technology
基金 国家自然科学基金资助项目(61163010) 兰州市科技计划资助项目(2015-2-99)
关键词 特征选择 RELIEFF算法 mRMR算法 邻域粗糙集 SVM feature selection ReliefF algorithm mRMR algorithm neighborhood rough set SVM
  • 相关文献

参考文献9

二级参考文献50

  • 1洪洲.基于纹理特征的遥感影像监督分类[J].测绘与空间地理信息,2013,36(4):75-79. 被引量:5
  • 2李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330. 被引量:45
  • 3毛勇,皮道映,刘育明,孙优贤.Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification[J].Chinese Journal of Chemical Engineering,2006,14(1):65-72. 被引量:4
  • 4Benediktsson J A, Pesaresi M, Amason K. Classifica- tion and feature extraction for remole sensing images from urban areas based on morphological transformations[ J ].Geoscience anti Remote Sensing, IEEE Transactions on, 2003, 41(9): 1940-1949. 被引量:1
  • 5Jimenez L O, Rivera-Medina J L, Rodrigucz-Dgaz E, e! al. Integration of spatial and spectral intbrmation by means of unsupervised extraction and classificati:m for homogenous objects applied to multispectral and hyper- spectraldata[ J]. Geoscience and Remote Sensing, IEEE Transactions on, 2005, 43 (4) : 844 - 851. 被引量:1
  • 6Stathakis D, Perakis K. Feature evolution for classifiea- tion of remotely sensed data[J]. Geoscienee and Renmte Sensing Letters, IEEE, 2007, 4(3) : 354 - 358. 被引量:1
  • 7Zhang L, ZhangL, Tao D, et al. On combining multiple features for hyperspectral remote sensing image classifi- cation [ J ]. Geoscienee and Remote Sensing, IEEE Transaetions on, 2012, 50(3): 879-893. 被引量:1
  • 8Kononenko I. Estimating attributes: analysis and exten- sions of RELIEF[ C ]//Machine Learaing: ECML - 94. Springer Berlin Heidelberg, 1994:171 - 182. 被引量:1
  • 9MarkoR S, Igor K. Theoretical and empirical analysis of ReliefF and RReliei[ J]. Journal of Machine Learning,2003,53(1 -2) :23 -69. 被引量:1
  • 10Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data [J]. Journal of bioinformatics and computational biology, 2005, 3 (02) : 185 - 205. 被引量:1

共引文献76

同被引文献17

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部